Recent Trends in Multi user MIMO Communications

Recent Trends in Multi user MIMO Communications
Author: Maha Ben Zid
Publsiher: BoD – Books on Demand
Total Pages: 194
Release: 2013-12-04
Genre: Computers
ISBN: 9789535112105

Download Recent Trends in Multi user MIMO Communications Book in PDF, Epub and Kindle

This book emphasis on multi-user MIMO communication. It covers a collection of the major topics and issues in multi-user MIMO systems. Recent Trends in Multi-user MIMO Communications provides a tutorial overview of the latest technologies and research keys related to multi-user communication. This book is composed of seven chapters, each written by a different set of authors. Features include: Fundamentals of multi-user MIMO communication, Random Beamforming in multi-user MIMO systems, LTE and LTE-Advanced framework, Interference cancellation in multi-user MIMO systems, Incorporation of multi-user capabilities in IEEE 802.11n/ac for WLAN systems, Physical layer security for multi-user MIMO communication, User selection based error probability of MIMO detector in multi-user MIMO systems.

Space Time Processing for MIMO Communications

Space Time Processing for MIMO Communications
Author: Alex Gershman,Nikos Sidiropoulos
Publsiher: John Wiley & Sons
Total Pages: 388
Release: 2005-08-05
Genre: Technology & Engineering
ISBN: 9780470010037

Download Space Time Processing for MIMO Communications Book in PDF, Epub and Kindle

Driven by the desire to boost the quality of service of wireless systems closer to that afforded by wireline systems, space-time processing for multiple-input multiple-output (MIMO) wireless communications research has drawn remarkable interest in recent years. Exciting theoretical advances have been complemented by rapid transition of research results to industry products and services, thus creating a vibrant new area. Space-time processing is a broad area, owing in part to the underlying convergence of information theory, communications and signal processing research that brought it to fruition. This book presents a balanced and timely introduction to space-time processing for MIMO communications, including highlights of emerging trends, such as spatial multiplexing and joint transceiver optimization. Includes detailed coverage of wireless channel sounding, modelling, characterization and model validation. Provides state-of-the-art research results on space-time coding, including comprehensive tutorial coverage of orthogonal space-time block codes. Discusses important recent developments in spatial multiplexing, transmit beam-forming, pre-coding and joint transceiver design for the multi-user MIMO downlink using full or partial CSI. Illustrates all theory with numerous examples gleaned from cutting-edge research from around the globe. This valuable resource will appeal to engineers, developers and consultants involved in the design and implementation of space-time processing for MIMO communications. Its accessible format, amply illustrated with real world case studies, contains relevant, detailed advice for postgraduate students and researchers specializing in this field.

Applications and Techniques in Information Security

Applications and Techniques in Information Security
Author: V. S. Shankar Sriram,V. Subramaniyaswamy,N. Sasikaladevi,Leo Zhang,Lynn Batten,Gang Li
Publsiher: Springer Nature
Total Pages: 315
Release: 2019-11-15
Genre: Computers
ISBN: 9789811508714

Download Applications and Techniques in Information Security Book in PDF, Epub and Kindle

This book constitutes the refereed proceedings of the 10th International Conference on Applications and Techniques in Information Security, ATIS 2019, held in Tamil Nadul, India, in November 2019. The 22 full papers and 2 short papers presented in the volume were carefully reviewed and selected from 50 submissions. The papers are organized in the following topical sections: information security; network security; intrusion detection system; authentication and key management system; security centric applications.

IMDC SDSP 2020

IMDC SDSP 2020
Author: Raed Abd-Alhameed,Rana Zubo,Obed Ali
Publsiher: European Alliance for Innovation
Total Pages: 1619
Release: 2020-09-09
Genre: Education
ISBN: 9781631902611

Download IMDC SDSP 2020 Book in PDF, Epub and Kindle

IMDC-SDSP conference offers an exceptional platform and opportunity for practitioners, industry experts, technocrats, academics, information scientists, innovators, postgraduate students, and research scholars to share their experiences for the advancement of knowledge and obtain critical feedback on their work. The timing of this conference coincides with the rise of Big Data, Artificial Intelligence powered applications, Cognitive Communications, Green Energy, Adaptive Control and Mobile Robotics towards maintaining the Sustainable Development and Smart Planning and management of the future technologies. It is aimed at the knowledge generated from the integration of the different data sources related to a number of active real-time applications in supporting the smart planning and enhance and sustain a healthy environment. The conference also covers the rise of the digital health, well-being, home care, and patient-centred era for the benefit of patients and healthcare providers; in addition to how supporting the development of a platform of smart Dynamic Health Systems and self-management.

Spatial Resource Allocation in Massive MIMO Communications

Spatial Resource Allocation in Massive MIMO Communications
Author: Trinh Van Chien
Publsiher: Linköping University Electronic Press
Total Pages: 66
Release: 2019-12-09
Genre: Electronic Book
ISBN: 9789179299415

Download Spatial Resource Allocation in Massive MIMO Communications Book in PDF, Epub and Kindle

Massive MIMO (multiple-input multiple-output) is considered as an heir of the multi-user MIMO technology and it has gained lots of attention from both academia and industry since the last decade. By equipping base stations (BSs) with hundreds of antennas in a compact array or a distributed manner, this new technology can provide very large multiplexing gains by serving many users on the same time-frequency resources and thereby bring significant improvements in spectral efficiency (SE) and energy efficiency (EE) over the current wireless networks. The transmit power, pilot training, and spatial transmission resources need to be allocated properly to the users to achieve the highest possible performance. This is called resource allocation and can be formulated as design utility optimization problems. If the resource allocation in Massive MIMO is optimized, the technology can handle the exponential growth in both wireless data traffic and number of wireless devices, which cannot be done by the current cellular network technology. In this thesis, we focus on the five different resource allocation aspects in Massive MIMO communications: The first part of the thesis studies if power control and advanced coordinated multipoint (CoMP) techniques are able to bring substantial gains to multi-cell Massive MIMO systems compared to the systems without using CoMP. More specifically, we consider a network topology with no cell boundary where the BSs can collaborate to serve the users in the considered coverage area. We focus on a downlink (DL) scenario in which each BS transmits different data signals to each user. This scenario does not require phase synchronization between BSs and therefore has the same backhaul requirements as conventional Massive MIMO systems, where each user is preassigned to only one BS. The scenario where all BSs are phase synchronized to send the same data is also included for comparison. We solve a total transmit power minimization problem in order to observe how much power Massive MIMO BSs consume to provide the requested quality of service (QoS) of each user. A max-min fairness optimization is also solved to provide every user with the same maximum QoS regardless of the propagation conditions. The second part of the thesis considers a joint pilot design and uplink (UL) power control problem in multi-cell Massive MIMO. The main motivation for this work is that the pilot assignment and pilot power allocation is momentous in Massive MIMO since the BSs are supposed to construct linear detection and precoding vectors from the channel estimates. Pilot contamination between pilot-sharing users leads to more interference during data transmission. The pilot design is more difficult if the pilot signals are reused frequently in space, as in Massive MIMO, which leads to greater pilot contamination effects. Related works have only studied either the pilot assignment or the pilot power control, but not the joint optimization. Furthermore, the pilot assignment is usually formulated as a combinatorial problem leading to prohibitive computational complexity. Therefore, in the second part of this thesis, a new pilot design is proposed to overcome such challenges by treating the pilot signals as continuous optimization variables. We use those pilot signals to solve different max-min fairness optimization problems with either ideal hardware or hardware impairments. The third part of this thesis studies a two-layer decoding method that mitigates inter-cell interference in multi-cell Massive MIMO systems. In layer one, each BS estimates the channels to intra-cell users and uses the estimates for local decoding within the cell. This is followed by a second decoding layer where the BSs cooperate to mitigate inter-cell interference. An UL achievable SE expression is computed for arbitrary two-layer decoding schemes, while a closed form expression is obtained for correlated Rayleigh fading channels, maximum-ratio combining (MRC), and largescale fading decoding (LSFD) in the second layer. We formulate a sum SE maximization problem with both the data power and LSFD vectors as optimization variables. Since the problem is non-convex, we develop an algorithm based on the weighted minimum mean square error (MMSE) approach to obtain a stationary point with low computational complexity. Motivated by recent successes of deep learning in predicting the solution to an optimization problem with low runtime, the fourth part of this thesis investigates the use of deep learning for power control optimization in Massive MIMO. We formulate the joint data and pilot power optimization for maximum sum SE in multi-cell Massive MIMO systems, which is a non-convex problem. We propose a new optimization algorithm, inspired by the weighted MMSE approach, to obtain a stationary point in polynomial time. We then use this algorithm together with deep learning to train a convolutional neural network to perform the joint data and pilot power control in sub-millisecond runtime. The solution is suitable for online optimization. Finally, the fifth part of this thesis considers a large-scale distributed antenna system that serves the users by coherent joint transmission called Cell-free Massive MIMO. For a given user set, only a subset of the access points (APs) is likely needed to satisfy the users' performance demands. To find a flexible and energy-efficient implementation, we minimize the total power consumption at the APs in the DL, considering both the hardware consumed and transmit powers, where APs can be turned off to reduce the former part. Even though this is a nonconvex optimization problem, a globally optimal solution is obtained by solving a mixed-integer second-order cone program (SOCP). We also propose low-complexity algorithms that exploit group-sparsity or received power strength in the problem formulation.

MIMO System Technology for Wireless Communications

MIMO System Technology for Wireless Communications
Author: George Tsoulos
Publsiher: CRC Press
Total Pages: 274
Release: 2018-10-03
Genre: Technology & Engineering
ISBN: 9781351837903

Download MIMO System Technology for Wireless Communications Book in PDF, Epub and Kindle

For broadband communications, it was frequency division multiplexing. For optical communications, it was wavelength division multiplexing. Then, for all types of networks it was code division. Breakthroughs in transmission speed were made possible by these developments, heralding next-generation networks of increasing capability in each case. The basic idea is the same: more channels equals higher throughput. For wireless communications, it is space-time coding using multiple-input-multiple-output (MIMO) technology. Providing a complete treatment of MIMO under a single cover, MIMO System Technology for Wireless Communications assembles coverage on all aspects of MIMO technology along with up-to-date information on key related issues. Contributors from leading academic and industrial institutions around the world share their expertise and lend the book a global perspective. They lead you gradually from basic to more advanced concepts, from propagation modeling and performance analysis to space-time codes, various systems, implementation options and limitations, practical system development considerations, field trials, and network planning issues. Linking theoretical analysis to practical issues, the book does not limit itself to any specific standardization or research/industrial initiatives. MIMO is the catalyst for the next revolution in wireless systems, and MIMO System Technology for Wireless Communications lays a thorough and complete foundation on which to build the next and future generations of wireless networks.

Massive MIMO

Massive MIMO
Author: Hien Quoc Ngo
Publsiher: Linköping University Electronic Press
Total Pages: 45
Release: 2015-01-16
Genre: Electronic Book
ISBN: 9789175191478

Download Massive MIMO Book in PDF, Epub and Kindle

The last ten years have seen a massive growth in the number of connected wireless devices. Billions of devices are connected and managed by wireless networks. At the same time, each device needs a high throughput to support applications such as voice, real-time video, movies, and games. Demands for wireless throughput and the number of wireless devices will always increase. In addition, there is a growing concern about energy consumption of wireless communication systems. Thus, future wireless systems have to satisfy three main requirements: i) having a high throughput; ii) simultaneously serving many users; and iii) having less energy consumption. Massive multiple-input multiple-output (MIMO) technology, where a base station (BS) equipped with very large number of antennas (collocated or distributed) serves many users in the same time-frequency resource, can meet the above requirements, and hence, it is a promising candidate technology for next generations of wireless systems. With massive antenna arrays at the BS, for most propagation environments, the channels become favorable, i.e., the channel vectors between the users and the BS are (nearly) pairwisely orthogonal, and hence, linear processing is nearly optimal. A huge throughput and energy efficiency can be achieved due to the multiplexing gain and the array gain. In particular, with a simple power control scheme, Massive MIMO can offer uniformly good service for all users. In this dissertation, we focus on the performance of Massive MIMO. The dissertation consists of two main parts: fundamentals and system designs of Massive MIMO. In the first part, we focus on fundamental limits of the system performance under practical constraints such as low complexity processing, limited length of each coherence interval, intercell interference, and finite-dimensional channels. We first study the potential for power savings of the Massive MIMO uplink with maximum-ratio combining (MRC), zero-forcing, and minimum mean-square error receivers, under perfect and imperfect channels. The energy and spectral efficiency tradeoff is investigated. Secondly, we consider a physical channel model where the angular domain is divided into a finite number of distinct directions. A lower bound on the capacity is derived, and the effect of pilot contamination in this finite-dimensional channel model is analyzed. Finally, some aspects of favorable propagation in Massive MIMO under Rayleigh fading and line-of-sight (LoS) channels are investigated. We show that both Rayleigh fading and LoS environments offer favorable propagation. In the second part, based on the fundamental analysis in the first part, we propose some system designs for Massive MIMO. The acquisition of channel state information (CSI) is very importantin Massive MIMO. Typically, the channels are estimated at the BS through uplink training. Owing to the limited length of the coherence interval, the system performance is limited by pilot contamination. To reduce the pilot contamination effect, we propose an eigenvalue-decomposition-based scheme to estimate the channel directly from the received data. The proposed scheme results in better performance compared with the conventional training schemes due to the reduced pilot contamination. Another important issue of CSI acquisition in Massive MIMO is how to acquire CSI at the users. To address this issue, we propose two channel estimation schemes at the users: i) a downlink "beamforming training" scheme, and ii) a method for blind estimation of the effective downlink channel gains. In both schemes, the channel estimation overhead is independent of the number of BS antennas. We also derive the optimal pilot and data powers as well as the training duration allocation to maximize the sum spectral efficiency of the Massive MIMO uplink with MRC receivers, for a given total energy budget spent in a coherence interval. Finally, applications of Massive MIMO in relay channels are proposed and analyzed. Specifically, we consider multipair relaying systems where many sources simultaneously communicate with many destinations in the same time-frequency resource with the help of a massive MIMO relay. A massive MIMO relay is equipped with many collocated or distributed antennas. We consider different duplexing modes (full-duplex and half-duplex) and different relaying protocols (amplify-and-forward, decode-and-forward, two-way relaying, and one-way relaying) at the relay. The potential benefits of massive MIMO technology in these relaying systems are explored in terms of spectral efficiency and power efficiency.

MIMO Communications Fundamental Theory Propagation Channels and Antenna Systems

MIMO Communications   Fundamental Theory  Propagation Channels  and Antenna Systems
Author: Ahmed Kishk,Xiaoming Chen
Publsiher: BoD – Books on Demand
Total Pages: 344
Release: 2023-12-20
Genre: Technology & Engineering
ISBN: 9781837689996

Download MIMO Communications Fundamental Theory Propagation Channels and Antenna Systems Book in PDF, Epub and Kindle

Multiple-input, multiple-output (MIMO) communication technology has become a critical enabler for high-speed wireless communication systems. This edited volume, MIMO Communications – Fundamental Theory, Propagation Channels, and Antenna Systems, is a comprehensive resource for researchers, graduate students, and practicing engineers in wireless communication. The volume is divided into four parts that cover the foundations of wireless communications, antenna techniques, channel modeling, autonomous driving and radars. Experts in the field have authored chapters covering various topics, including capacity analysis of MIMO channels, antenna array design and beamforming techniques, channel modeling and estimation, and the applications of autonomous driving and radars. This book provides a detailed and accessible introduction to the latest research and practical applications in MIMO communication technology. It is an essential resource for anyone interested in learning about MIMO communication technology or looking to deepen their understanding of existing systems.