Redundancy in Robot Manipulators and Multi Robot Systems

Redundancy in Robot Manipulators and Multi Robot Systems
Author: Dejan Milutinović,Jacob Rosen
Publsiher: Springer
Total Pages: 244
Release: 2012-10-12
Genre: Technology & Engineering
ISBN: 3642339727

Download Redundancy in Robot Manipulators and Multi Robot Systems Book in PDF, Epub and Kindle

The trend in the evolution of robotic systems is that the number of degrees of freedom increases. This is visible both in robot manipulator design and in the shift of focus from single to multi-robot systems. Following the principles of evolution in nature, one may infer that adding degrees of freedom to robot systems design is beneficial. However, since nature did not select snake-like bodies for all creatures, it is reasonable to expect the presence of a certain selection pressure on the number of degrees of freedom. Thus, understanding costs and benefits of multiple degrees of freedom, especially those that create redundancy, is a fundamental problem in the field of robotics. This volume is mostly based on the works presented at the workshop on Redundancy in Robot Manipulators and Multi-Robot Systems at the IEEE/RSJ International Conference on Intelligent Robots and Systems - IROS 2011. The workshop was envisioned as a dialog between researchers from two separate, but obviously related fields of robotics: one that deals with systems having multiple degrees of freedom, including redundant robot manipulators, and the other that deals with multirobot systems. The volume consists of twelve chapters, each representing one of the two fields.

Redundancy in Robot Manipulators and Multi Robot Systems

Redundancy in Robot Manipulators and Multi Robot Systems
Author: Dejan Milutinović,Jacob Rosen
Publsiher: Springer Science & Business Media
Total Pages: 240
Release: 2012-10-12
Genre: Technology & Engineering
ISBN: 9783642339714

Download Redundancy in Robot Manipulators and Multi Robot Systems Book in PDF, Epub and Kindle

The trend in the evolution of robotic systems is that the number of degrees of freedom increases. This is visible both in robot manipulator design and in the shift of focus from single to multi-robot systems. Following the principles of evolution in nature, one may infer that adding degrees of freedom to robot systems design is beneficial. However, since nature did not select snake-like bodies for all creatures, it is reasonable to expect the presence of a certain selection pressure on the number of degrees of freedom. Thus, understanding costs and benefits of multiple degrees of freedom, especially those that create redundancy, is a fundamental problem in the field of robotics. This volume is mostly based on the works presented at the workshop on Redundancy in Robot Manipulators and Multi-Robot Systems at the IEEE/RSJ International Conference on Intelligent Robots and Systems - IROS 2011. The workshop was envisioned as a dialog between researchers from two separate, but obviously related fields of robotics: one that deals with systems having multiple degrees of freedom, including redundant robot manipulators, and the other that deals with multirobot systems. The volume consists of twelve chapters, each representing one of the two fields.

Robot Manipulator Redundancy Resolution

Robot Manipulator Redundancy Resolution
Author: Yunong Zhang,Long Jin
Publsiher: John Wiley & Sons
Total Pages: 320
Release: 2017-09-06
Genre: Technology & Engineering
ISBN: 9781119381433

Download Robot Manipulator Redundancy Resolution Book in PDF, Epub and Kindle

Introduces a revolutionary, quadratic-programming based approach to solving long-standing problems in motion planning and control of redundant manipulators This book describes a novel quadratic programming approach to solving redundancy resolutions problems with redundant manipulators. Known as ``QP-unified motion planning and control of redundant manipulators'' theory, it systematically solves difficult optimization problems of inequality-constrained motion planning and control of redundant manipulators that have plagued robotics engineers and systems designers for more than a quarter century. An example of redundancy resolution could involve a robotic limb with six joints, or degrees of freedom (DOFs), with which to position an object. As only five numbers are required to specify the position and orientation of the object, the robot can move with one remaining DOF through practically infinite poses while performing a specified task. In this case redundancy resolution refers to the process of choosing an optimal pose from among that infinite set. A critical issue in robotic systems control, the redundancy resolution problem has been widely studied for decades, and numerous solutions have been proposed. This book investigates various approaches to motion planning and control of redundant robot manipulators and describes the most successful strategy thus far developed for resolving redundancy resolution problems. Provides a fully connected, systematic, methodological, consecutive, and easy approach to solving redundancy resolution problems Describes a new approach to the time-varying Jacobian matrix pseudoinversion, applied to the redundant-manipulator kinematic control Introduces The QP-based unification of robots' redundancy resolution Illustrates the effectiveness of the methods presented using a large number of computer simulation results based on PUMA560, PA10, and planar robot manipulators Provides technical details for all schemes and solvers presented, for readers to adopt and customize them for specific industrial applications Robot Manipulator Redundancy Resolution is must-reading for advanced undergraduates and graduate students of robotics, mechatronics, mechanical engineering, tracking control, neural dynamics/neural networks, numerical algorithms, computation and optimization, simulation and modelling, analog, and digital circuits. It is also a valuable working resource for practicing robotics engineers and systems designers and industrial researchers.

Redundancy in Robot Manipulators and Multi Robot Systems

Redundancy in Robot Manipulators and Multi Robot Systems
Author: Dejan Milutinović,Jacob Rosen
Publsiher: Springer Science & Business Media
Total Pages: 240
Release: 2012-10-12
Genre: Technology & Engineering
ISBN: 9783642339707

Download Redundancy in Robot Manipulators and Multi Robot Systems Book in PDF, Epub and Kindle

The trend in the evolution of robotic systems is that the number of degrees of freedom increases. This is visible both in robot manipulator design and in the shift of focus from single to multi-robot systems. Following the principles of evolution in nature, one may infer that adding degrees of freedom to robot systems design is beneficial. However, since nature did not select snake-like bodies for all creatures, it is reasonable to expect the presence of a certain selection pressure on the number of degrees of freedom. Thus, understanding costs and benefits of multiple degrees of freedom, especially those that create redundancy, is a fundamental problem in the field of robotics. This volume is mostly based on the works presented at the workshop on Redundancy in Robot Manipulators and Multi-Robot Systems at the IEEE/RSJ International Conference on Intelligent Robots and Systems - IROS 2011. The workshop was envisioned as a dialog between researchers from two separate, but obviously related fields of robotics: one that deals with systems having multiple degrees of freedom, including redundant robot manipulators, and the other that deals with multirobot systems. The volume consists of twelve chapters, each representing one of the two fields.

Repetitive Motion Planning and Control of Redundant Robot Manipulators

Repetitive Motion Planning and Control of Redundant Robot Manipulators
Author: Yunong Zhang,Zhijun Zhang
Publsiher: Springer Science & Business Media
Total Pages: 201
Release: 2014-07-08
Genre: Technology & Engineering
ISBN: 9783642375187

Download Repetitive Motion Planning and Control of Redundant Robot Manipulators Book in PDF, Epub and Kindle

Repetitive Motion Planning and Control of Redundant Robot Manipulators presents four typical motion planning schemes based on optimization techniques, including the fundamental RMP scheme and its extensions. These schemes are unified as quadratic programs (QPs), which are solved by neural networks or numerical algorithms. The RMP schemes are demonstrated effectively by the simulation results based on various robotic models; the experiments applying the fundamental RMP scheme to a physical robot manipulator are also presented. As the schemes and the corresponding solvers presented in the book have solved the non-repetitive motion problems existing in redundant robot manipulators, it is of particular use in applying theoretical research based on the quadratic program for redundant robot manipulators in industrial situations. This book will be a valuable reference work for engineers, researchers, advanced undergraduate and graduate students in robotics fields. Yunong Zhang is a professor at The School of Information Science and Technology, Sun Yat-sen University, Guangzhou, China; Zhijun Zhang is a research fellow working at the same institute.

Highly Redundant Sensing in Robotic Systems

Highly Redundant Sensing in Robotic Systems
Author: Julius T. Tou,Jens G. Balchen
Publsiher: Springer Science & Business Media
Total Pages: 324
Release: 2012-12-06
Genre: Computers
ISBN: 9783642840517

Download Highly Redundant Sensing in Robotic Systems Book in PDF, Epub and Kindle

Design of intelligent robots is one of the most important endeavors in robotics research today. The key to intelligent robot design lies in sensory systems for robotic control and manipulation. In an unstructural environment, robotic sensing translates measurements and characteristics of the environment and working objects into useful information. A robotic system is usually equipped with a variety of sensors to perform redundant sensing and achieve data fusion. This book contains revised versions of papers presented at a NATO Advanced Research Workshop held in Florida in September 1989 within the activities of the NATO Special Programme on Sensory Systems for Robotic Control. The fundamental issues addressed in this volume were: - Theory and techniques, including knowledge-based systems, geometrical fusion, Boolean fusion, probabilistic fusion, feature-based fusion, error-estimation approach, and Markov process modeling. - General concepts, including microscopic redundancy at the sensory element level, macroscopic redundancy at the sensory system level, parallel redundancy, and standby redundancy. - Implementation and application, including robotic control, sensory technology, robotic assembly, robot fingers, sensory signal processing, sensory system integration, and PAPIA architecture. - Biological analogies, including neural nets, pattern recognition, low-level fusion, and motor learning.

Control of Redundant Robot Manipulators

Control of Redundant Robot Manipulators
Author: Rajni V. Patel,F. Shadpey
Publsiher: Springer Science & Business Media
Total Pages: 228
Release: 2005-05-04
Genre: Technology & Engineering
ISBN: 3540250719

Download Control of Redundant Robot Manipulators Book in PDF, Epub and Kindle

This monograph provides a comprehensive and thorough treatment of the problem of controlling a redundant robot manipulator. It presents the latest research from the field with a good balance between theory and practice. All theoretical developments are verified both via simulation and experimental work on an actual prototype redundant robot manipulator. This book is the first text aimed at graduate students and researchers working in the area of redundant manipulators giving a comprehensive coverage of control of redundant robot manipulators from the viewpoint of theory and experimentation.

Wearable Robotics

Wearable Robotics
Author: Jacob Rosen
Publsiher: Academic Press
Total Pages: 551
Release: 2019-11-16
Genre: Science
ISBN: 9780128146606

Download Wearable Robotics Book in PDF, Epub and Kindle

Wearable Robotics: Systems and Applications provides a comprehensive overview of the entire field of wearable robotics, including active orthotics (exoskeleton) and active prosthetics for the upper and lower limb and full body. In its two major sections, wearable robotics systems are described from both engineering perspectives and their application in medicine and industry. Systems and applications at various levels of the development cycle are presented, including those that are still under active research and development, systems that are under preliminary or full clinical trials, and those in commercialized products. This book is a great resource for anyone working in this field, including researchers, industry professionals and those who want to use it as a teaching mechanism. Provides a comprehensive overview of the entire field, with both engineering and medical perspectives Helps readers quickly and efficiently design and develop wearable robotics for healthcare applications