Relaxation and Decomposition Methods for Mixed Integer Nonlinear Programming

Relaxation and Decomposition Methods for Mixed Integer Nonlinear Programming
Author: Ivo Nowak
Publsiher: Springer Science & Business Media
Total Pages: 213
Release: 2006-03-28
Genre: Computers
ISBN: 9783764373740

Download Relaxation and Decomposition Methods for Mixed Integer Nonlinear Programming Book in PDF, Epub and Kindle

Nonlinearoptimizationproblemscontainingbothcontinuousanddiscretevariables are called mixed integer nonlinear programs (MINLP). Such problems arise in many ?elds, such as process industry, engineering design, communications, and ?nance. There is currently a huge gap between MINLP and mixed integer linear programming(MIP) solvertechnology.With a modernstate-of-the-artMIP solver itispossibletosolvemodelswithmillionsofvariablesandconstraints,whereasthe dimensionofsolvableMINLPsisoftenlimitedbyanumberthatissmallerbythree or four orders of magnitude. It is theoretically possible to approximate a general MINLP by a MIP with arbitrary precision. However, good MIP approximations are usually much larger than the original problem. Moreover, the approximation of nonlinear functions by piecewise linear functions can be di?cult and ti- consuming. In this book relaxation and decomposition methods for solving nonconvex structured MINLPs are proposed. In particular, a generic branch-cut-and-price (BCP) framework for MINLP is presented. BCP is the underlying concept in almost all modern MIP solvers. Providing a powerful decomposition framework for both sequential and parallel solvers, it made the success of the current MIP technology possible. So far generic BCP frameworks have been developed only for MIP, for example,COIN/BCP (IBM, 2003) andABACUS (OREAS GmbH, 1999). In order to generalize MIP-BCP to MINLP-BCP, the following points have to be taken into account: • A given (sparse) MINLP is reformulated as a block-separable program with linear coupling constraints.The block structure makes it possible to generate Lagrangian cuts and to apply Lagrangian heuristics. • In order to facilitate the generation of polyhedral relaxations, nonlinear c- vex relaxations are constructed. • The MINLP separation and pricing subproblems for generating cuts and columns are solved with specialized MINLP solvers.

Convexification and Global Optimization in Continuous and Mixed Integer Nonlinear Programming

Convexification and Global Optimization in Continuous and Mixed Integer Nonlinear Programming
Author: Mohit Tawarmalani,Nikolaos V. Sahinidis
Publsiher: Springer Science & Business Media
Total Pages: 492
Release: 2013-04-17
Genre: Mathematics
ISBN: 9781475735321

Download Convexification and Global Optimization in Continuous and Mixed Integer Nonlinear Programming Book in PDF, Epub and Kindle

Interest in constrained optimization originated with the simple linear pro gramming model since it was practical and perhaps the only computationally tractable model at the time. Constrained linear optimization models were soon adopted in numerous application areas and are perhaps the most widely used mathematical models in operations research and management science at the time of this writing. Modelers have, however, found the assumption of linearity to be overly restrictive in expressing the real-world phenomena and problems in economics, finance, business, communication, engineering design, computational biology, and other areas that frequently demand the use of nonlinear expressions and discrete variables in optimization models. Both of these extensions of the linear programming model are NP-hard, thus representing very challenging problems. On the brighter side, recent advances in algorithmic and computing technology make it possible to re visit these problems with the hope of solving practically relevant problems in reasonable amounts of computational time. Initial attempts at solving nonlinear programs concentrated on the de velopment of local optimization methods guaranteeing globality under the assumption of convexity. On the other hand, the integer programming liter ature has concentrated on the development of methods that ensure global optima. The aim of this book is to marry the advancements in solving nonlinear and integer programming models and to develop new results in the more general framework of mixed-integer nonlinear programs (MINLPs) with the goal of devising practically efficient global optimization algorithms for MINLPs.

Mixed Integer Nonlinear Programming

Mixed Integer Nonlinear Programming
Author: Jon Lee,Sven Leyffer
Publsiher: Springer Science & Business Media
Total Pages: 687
Release: 2011-12-02
Genre: Mathematics
ISBN: 9781461419273

Download Mixed Integer Nonlinear Programming Book in PDF, Epub and Kindle

Many engineering, operations, and scientific applications include a mixture of discrete and continuous decision variables and nonlinear relationships involving the decision variables that have a pronounced effect on the set of feasible and optimal solutions. Mixed-integer nonlinear programming (MINLP) problems combine the numerical difficulties of handling nonlinear functions with the challenge of optimizing in the context of nonconvex functions and discrete variables. MINLP is one of the most flexible modeling paradigms available for optimization; but because its scope is so broad, in the most general cases it is hopelessly intractable. Nonetheless, an expanding body of researchers and practitioners — including chemical engineers, operations researchers, industrial engineers, mechanical engineers, economists, statisticians, computer scientists, operations managers, and mathematical programmers — are interested in solving large-scale MINLP instances.

Nonlinear and Mixed Integer Optimization

Nonlinear and Mixed Integer Optimization
Author: Christodoulos A. Floudas
Publsiher: Oxford University Press on Demand
Total Pages: 475
Release: 1995-10-05
Genre: Science
ISBN: 9780195100563

Download Nonlinear and Mixed Integer Optimization Book in PDF, Epub and Kindle

1. Introduction. PART 1. FUNDAMENTALS OF CONVEX ANALYSIS AND NONLINEAR OPTIMIZATION. 2. Convex Analysis. 3. Fundamentals of Nonlinear Optimization. 4. Duality Theory. PART 2. FUNDAMENTALS OF MIXED-INTEGER OPTIMIZATION. 5. Mixed-Integer Linear Optimization. 6. Mixed-Integer Nonlinear Optimization. PART 3. APPLICATIONS IN PROCESS SYNTHESIS. 7. Process Synthesis. 8. Heat Exchanger Network Synthesis. 9. Distillation-based Separation Systems Synthesis. 10. Synthesis of Reactor Networks and Reactor-Separator-Recycle Systems. Bibliography. Index.

Large scale Optimization

Large scale Optimization
Author: Vladimir Tsurkov
Publsiher: Springer Science & Business Media
Total Pages: 322
Release: 2013-03-09
Genre: Computers
ISBN: 9781475732436

Download Large scale Optimization Book in PDF, Epub and Kindle

Decomposition methods aim to reduce large-scale problems to simpler problems. This monograph presents selected aspects of the dimension-reduction problem. Exact and approximate aggregations of multidimensional systems are developed and from a known model of input-output balance, aggregation methods are categorized. The issues of loss of accuracy, recovery of original variables (disaggregation), and compatibility conditions are analyzed in detail. The method of iterative aggregation in large-scale problems is studied. For fixed weights, successively simpler aggregated problems are solved and the convergence of their solution to that of the original problem is analyzed. An introduction to block integer programming is considered. Duality theory, which is widely used in continuous block programming, does not work for the integer problem. A survey of alternative methods is presented and special attention is given to combined methods of decomposition. Block problems in which the coupling variables do not enter the binding constraints are studied. These models are worthwhile because they permit a decomposition with respect to primal and dual variables by two-level algorithms instead of three-level algorithms. Audience: This book is addressed to specialists in operations research, optimization, and optimal control.

Disjunctive Programming

Disjunctive Programming
Author: Egon Balas
Publsiher: Springer
Total Pages: 238
Release: 2018-11-27
Genre: Mathematics
ISBN: 9783030001483

Download Disjunctive Programming Book in PDF, Epub and Kindle

Disjunctive Programming is a technique and a discipline initiated by the author in the early 1970's, which has become a central tool for solving nonconvex optimization problems like pure or mixed integer programs, through convexification (cutting plane) procedures combined with enumeration. It has played a major role in the revolution in the state of the art of Integer Programming that took place roughly during the period 1990-2010. The main benefit that the reader may acquire from reading this book is a deeper understanding of the theoretical underpinnings and of the applications potential of disjunctive programming, which range from more efficient problem formulation to enhanced modeling capability and improved solution methods for integer and combinatorial optimization. Egon Balas is University Professor and Lord Professor of Operations Research at Carnegie Mellon University's Tepper School of Business.

Decomposition Techniques in Mathematical Programming

Decomposition Techniques in Mathematical Programming
Author: Antonio J. Conejo,Enrique Castillo,Roberto Minguez,Raquel Garcia-Bertrand
Publsiher: Springer Science & Business Media
Total Pages: 542
Release: 2006-04-28
Genre: Technology & Engineering
ISBN: 9783540276869

Download Decomposition Techniques in Mathematical Programming Book in PDF, Epub and Kindle

Optimization plainly dominates the design, planning, operation, and c- trol of engineering systems. This is a book on optimization that considers particular cases of optimization problems, those with a decomposable str- ture that can be advantageously exploited. Those decomposable optimization problems are ubiquitous in engineering and science applications. The book considers problems with both complicating constraints and complicating va- ables, and analyzes linear and nonlinear problems, with and without in- ger variables. The decomposition techniques analyzed include Dantzig-Wolfe, Benders, Lagrangian relaxation, Augmented Lagrangian decomposition, and others. Heuristic techniques are also considered. Additionally, a comprehensive sensitivity analysis for characterizing the solution of optimization problems is carried out. This material is particularly novel and of high practical interest. This book is built based on many clarifying, illustrative, and compu- tional examples, which facilitate the learning procedure. For the sake of cl- ity, theoretical concepts and computational algorithms are assembled based on these examples. The results are simplicity, clarity, and easy-learning. We feel that this book is needed by the engineering community that has to tackle complex optimization problems, particularly by practitioners and researchersinEngineering,OperationsResearch,andAppliedEconomics.The descriptions of most decomposition techniques are available only in complex and specialized mathematical journals, di?cult to understand by engineers. A book describing a wide range of decomposition techniques, emphasizing problem-solving, and appropriately blending theory and application, was not previously available.

Nonlinear Integer Programming

Nonlinear Integer Programming
Author: Duan Li,Xiaoling Sun
Publsiher: Springer Science & Business Media
Total Pages: 452
Release: 2006-08-13
Genre: Mathematics
ISBN: 9780387329956

Download Nonlinear Integer Programming Book in PDF, Epub and Kindle

A combination of both Integer Programming and Nonlinear Optimization, this is a powerful book that surveys the field and provides a state-of-the-art treatment of Nonlinear Integer Programming. It is the first book available on the subject. The book aims to bring the theoretical foundation and solution methods for nonlinear integer programming to students and researchers in optimization, operations research, and computer science.