Sound Topology Duality Coherence and Wave Mixing

Sound Topology  Duality  Coherence and Wave Mixing
Author: Pierre Deymier,Keith Runge
Publsiher: Springer
Total Pages: 363
Release: 2017-08-12
Genre: Science
ISBN: 9783319623801

Download Sound Topology Duality Coherence and Wave Mixing Book in PDF, Epub and Kindle

This book offers an essential introduction to the notions of sound wave topology, duality, coherence and wave-mixing, which constitute the emerging new science of sound. It includes general principles and specific examples that illuminate new non-conventional forms of sound (sound topology), unconventional quantum-like behavior of phonons (duality), radical linear and nonlinear phenomena associated with loss and its control (coherence), and exquisite effects that emerge from the interaction of sound with other physical and biological waves (wave mixing). The book provides the reader with the foundations needed to master these complex notions through simple yet meaningful examples. General principles for unraveling and describing the topology of acoustic wave functions in the space of their Eigen values are presented. These principles are then applied to uncover intrinsic and extrinsic approaches to achieving non-conventional topologies by breaking the time reversal symmetry of acoustic waves. Symmetry breaking can impart topological immunity to wave degradation from imperfection scattering and catalyze controlled coherence. In the intrinsic case and the phonon representation of acoustic waves, the self-interaction/interference of a wave through its supporting medium exposes the notion of duality in the quantum statistics (i.e. boson vs. fermion characterized by the symmetry of multiple particle states) and how the quantum analogue behaviors of sound can be exploited in the form of novel sound-based information transfer and processing devices. By considering media that mix different types of waves, the book addresses the interaction of sound with other physical and biological waves but also brings to light examples of extrinsic processes that can lead to symmetry breaking. The coherent conversion of sound into other types of waves as well as the sound-induced non-conventional topology of elastic, electronic, spin and biological waves are presented in the case of media exhibiting elasto-electronic, photo-elastic, magneto-elastic effects and biological mechano-transduction.

Metamaterials in Topological Acoustics

Metamaterials in Topological Acoustics
Author: Sourav Banerjee
Publsiher: CRC Press
Total Pages: 430
Release: 2023-10-13
Genre: Technology & Engineering
ISBN: 9781000936537

Download Metamaterials in Topological Acoustics Book in PDF, Epub and Kindle

Serves as a single resource on acoustic metamaterials and is the first book to discuss energy harvesting from metamaterials Covers the fundamentals of classical mechanics, quantum mechanics, and state-of-the-art condensed matter physics principles so that topological acoustics can be easily understood by engineers Introduces topological behaviors, acoustics hall effects, and applications Details smart materials and introduces different energy harvesting mechanisms for metamaterials followed by mechatronics packaging Explains the pros and cons of different design methods and gives guidelines for selecting specific designs of acoustic metamaterials with specific topological behaviors Includes MATLAB and Python code for numerical analysis

Phonons in Low Dimensional Structures

Phonons in Low Dimensional Structures
Author: Vasilios N. Stavrou
Publsiher: BoD – Books on Demand
Total Pages: 176
Release: 2018-12-12
Genre: Science
ISBN: 9781789846263

Download Phonons in Low Dimensional Structures Book in PDF, Epub and Kindle

The field of low-dimensional structures has been experiencing rapid development in both theoretical and experimental research. Phonons in Low Dimensional Structures is a collection of chapters related to the properties of solid-state structures dependent on lattice vibrations. The book is divided into two parts. In the first part, research topics such as interface phonons and polaron states, carrier-phonon non-equilibrium dynamics, directional projection of elastic waves in parallel array of N elastically coupled waveguides, collective dynamics for longitudinal and transverse phonon modes, and elastic properties for bulk metallic glasses are related to semiconductor devices and metallic glasses devices. The second part of the book contains, among others, topics related to superconductor, phononic crystal carbon nanotube devices such as phonon dispersion calculations using density functional theory for a range of superconducting materials, phononic crystal-based MEMS resonators, absorption of acoustic phonons in the hyper-sound regime in fluorine-modified carbon nanotubes and single-walled nanotubes, phonon transport in carbon nanotubes, quantization of phonon thermal conductance, and phonon Anderson localization.

Galileo Unbound

Galileo Unbound
Author: David D. Nolte
Publsiher: Oxford University Press
Total Pages: 384
Release: 2018-07-12
Genre: Science
ISBN: 9780192528506

Download Galileo Unbound Book in PDF, Epub and Kindle

Galileo Unbound traces the journey that brought us from Galileo's law of free fall to today's geneticists measuring evolutionary drift, entangled quantum particles moving among many worlds, and our lives as trajectories traversing a health space with thousands of dimensions. Remarkably, common themes persist that predict the evolution of species as readily as the orbits of planets or the collapse of stars into black holes. This book tells the history of spaces of expanding dimension and increasing abstraction and how they continue today to give new insight into the physics of complex systems. Galileo published the first modern law of motion, the Law of Fall, that was ideal and simple, laying the foundation upon which Newton built the first theory of dynamics. Early in the twentieth century, geometry became the cause of motion rather than the result when Einstein envisioned the fabric of space-time warped by mass and energy, forcing light rays to bend past the Sun. Possibly more radical was Feynman's dilemma of quantum particles taking all paths at once — setting the stage for the modern fields of quantum field theory and quantum computing. Yet as concepts of motion have evolved, one thing has remained constant, the need to track ever more complex changes and to capture their essence, to find patterns in the chaos as we try to predict and control our world.

Holographic Duality in Condensed Matter Physics

Holographic Duality in Condensed Matter Physics
Author: Jan Zaanen,Yan Liu (fizyka),Ya-Wen Sun,Koenraad Schalm
Publsiher: Cambridge University Press
Total Pages: 587
Release: 2015-11-05
Genre: Science
ISBN: 9781107080089

Download Holographic Duality in Condensed Matter Physics Book in PDF, Epub and Kindle

A pioneering treatise presenting how the mathematical techniques of holographic duality can unify the fundamental theories of physics.

The Cognitive Theoretic Model of the Universe A New Kind of Reality Theory

The Cognitive Theoretic Model of the Universe  A New Kind of Reality Theory
Author: Christopher Michael Langan
Publsiher: Mega Foundation Press
Total Pages: 94
Release: 2002-06-01
Genre: Philosophy
ISBN: 9780971916227

Download The Cognitive Theoretic Model of the Universe A New Kind of Reality Theory Book in PDF, Epub and Kindle

Paperback version of the 2002 paper published in the journal Progress in Information, Complexity, and Design (PCID). ABSTRACT Inasmuch as science is observational or perceptual in nature, the goal of providing a scientific model and mechanism for the evolution of complex systems ultimately requires a supporting theory of reality of which perception itself is the model (or theory-to-universe mapping). Where information is the abstract currency of perception, such a theory must incorporate the theory of information while extending the information concept to incorporate reflexive self-processing in order to achieve an intrinsic (self-contained) description of reality. This extension is associated with a limiting formulation of model theory identifying mental and physical reality, resulting in a reflexively self-generating, self-modeling theory of reality identical to its universe on the syntactic level. By the nature of its derivation, this theory, the Cognitive Theoretic Model of the Universe or CTMU, can be regarded as a supertautological reality-theoretic extension of logic. Uniting the theory of reality with an advanced form of computational language theory, the CTMU describes reality as a Self Configuring Self-Processing Language or SCSPL, a reflexive intrinsic language characterized not only by self-reference and recursive self-definition, but full self-configuration and self-execution (reflexive read-write functionality). SCSPL reality embodies a dual-aspect monism consisting of infocognition, self-transducing information residing in self-recognizing SCSPL elements called syntactic operators. The CTMU identifies itself with the structure of these operators and thus with the distributive syntax of its self-modeling SCSPL universe, including the reflexive grammar by which the universe refines itself from unbound telesis or UBT, a primordial realm of infocognitive potential free of informational constraint. Under the guidance of a limiting (intrinsic) form of anthropic principle called the Telic Principle, SCSPL evolves by telic recursion, jointly configuring syntax and state while maximizing a generalized self-selection parameter and adjusting on the fly to freely-changing internal conditions. SCSPL relates space, time and object by means of conspansive duality and conspansion, an SCSPL-grammatical process featuring an alternation between dual phases of existence associated with design and actualization and related to the familiar wave-particle duality of quantum mechanics. By distributing the design phase of reality over the actualization phase, conspansive spacetime also provides a distributed mechanism for Intelligent Design, adjoining to the restrictive principle of natural selection a basic means of generating information and complexity. Addressing physical evolution on not only the biological but cosmic level, the CTMU addresses the most evident deficiencies and paradoxes associated with conventional discrete and continuum models of reality, including temporal directionality and accelerating cosmic expansion, while preserving virtually all of the major benefits of current scientific and mathematical paradigms.

Quantum Information Meets Quantum Matter

Quantum Information Meets Quantum Matter
Author: Bei Zeng,Xie Chen,Duan-Lu Zhou,Xiao-Gang Wen
Publsiher: Springer
Total Pages: 364
Release: 2019-03-28
Genre: Computers
ISBN: 9781493990849

Download Quantum Information Meets Quantum Matter Book in PDF, Epub and Kindle

This book approaches condensed matter physics from the perspective of quantum information science, focusing on systems with strong interaction and unconventional order for which the usual condensed matter methods like the Landau paradigm or the free fermion framework break down. Concepts and tools in quantum information science such as entanglement, quantum circuits, and the tensor network representation prove to be highly useful in studying such systems. The goal of this book is to introduce these techniques and show how they lead to a new systematic way of characterizing and classifying quantum phases in condensed matter systems. The first part of the book introduces some basic concepts in quantum information theory which are then used to study the central topic explained in Part II: local Hamiltonians and their ground states. Part III focuses on one of the major new phenomena in strongly interacting systems, the topological order, and shows how it can essentially be defined and characterized in terms of entanglement. Part IV shows that the key entanglement structure of topological states can be captured using the tensor network representation, which provides a powerful tool in the classification of quantum phases. Finally, Part V discusses the exciting prospect at the intersection of quantum information and condensed matter physics – the unification of information and matter. Intended for graduate students and researchers in condensed matter physics, quantum information science and related fields, the book is self-contained and no prior knowledge of these topics is assumed.

Sound and Music Computing

Sound and Music Computing
Author: Tapio Lokki,Stefania Serafin,Meinard Müller,Vesa Välimäki
Publsiher: MDPI
Total Pages: 621
Release: 2018-06-26
Genre: Computer music
ISBN: 9783038429074

Download Sound and Music Computing Book in PDF, Epub and Kindle

This book is a printed edition of the Special Issue "Sound and Music Computing" that was published in Applied Sciences