Virtual Fundamental Cycles in Symplectic Topology

Virtual Fundamental Cycles in Symplectic Topology
Author: John W. Morgan,Dusa McDuff,Mohammad Tehrani,Kenji Fukaya,Dominic Joyce
Publsiher: American Mathematical Soc.
Total Pages: 300
Release: 2019-04-12
Genre: Geometry, Differential
ISBN: 9781470450144

Download Virtual Fundamental Cycles in Symplectic Topology Book in PDF, Epub and Kindle

The method of using the moduli space of pseudo-holomorphic curves on a symplectic manifold was introduced by Mikhail Gromov in 1985. From the appearance of Gromov's original paper until today this approach has been the most important tool in global symplectic geometry. To produce numerical invariants of these manifolds using this method requires constructing a fundamental cycle associated with moduli spaces. This volume brings together three approaches to constructing the “virtual” fundamental cycle for the moduli space of pseudo-holomorphic curves. All approaches are based on the idea of local Kuranishi charts for the moduli space. Workers in the field will get a comprehensive understanding of the details of these constructions and the assumptions under which they can be made. These techniques and results will be essential in further applications of this approach to producing invariants of symplectic manifolds.

Kuranishi Structures and Virtual Fundamental Chains

Kuranishi Structures and Virtual Fundamental Chains
Author: Kenji Fukaya,Yong-Geun Oh,Hiroshi Ohta,Kaoru Ono
Publsiher: Springer Nature
Total Pages: 638
Release: 2020-10-16
Genre: Mathematics
ISBN: 9789811555626

Download Kuranishi Structures and Virtual Fundamental Chains Book in PDF, Epub and Kindle

The package of Gromov’s pseudo-holomorphic curves is a major tool in global symplectic geometry and its applications, including mirror symmetry and Hamiltonian dynamics. The Kuranishi structure was introduced by two of the authors of the present volume in the mid-1990s to apply this machinery on general symplectic manifolds without assuming any specific restrictions. It was further amplified by this book’s authors in their monograph Lagrangian Intersection Floer Theory and in many other publications of theirs and others. Answering popular demand, the authors now present the current book, in which they provide a detailed, self-contained explanation of the theory of Kuranishi structures. Part I discusses the theory on a single space equipped with Kuranishi structure, called a K-space, and its relevant basic package. First, the definition of a K-space and maps to the standard manifold are provided. Definitions are given for fiber products, differential forms, partitions of unity, and the notion of CF-perturbations on the K-space. Then, using CF-perturbations, the authors define the integration on K-space and the push-forward of differential forms, and generalize Stokes' formula and Fubini's theorem in this framework. Also, “virtual fundamental class” is defined, and its cobordism invariance is proved. Part II discusses the (compatible) system of K-spaces and the process of going from “geometry” to “homological algebra”. Thorough explanations of the extension of given perturbations on the boundary to the interior are presented. Also explained is the process of taking the “homotopy limit” needed to handle a system of infinitely many moduli spaces. Having in mind the future application of these chain level constructions beyond those already known, an axiomatic approach is taken by listing the properties of the system of the relevant moduli spaces and then a self-contained account of the construction of the associated algebraic structures is given. This axiomatic approach makes the exposition contained here independent of previously published construction of relevant structures.

The Adams Spectral Sequence for Topological Modular Forms

The Adams Spectral Sequence for Topological Modular Forms
Author: Robert R. Bruner,John Rognes
Publsiher: American Mathematical Society
Total Pages: 690
Release: 2021-12-23
Genre: Mathematics
ISBN: 9781470469580

Download The Adams Spectral Sequence for Topological Modular Forms Book in PDF, Epub and Kindle

The connective topological modular forms spectrum, $tmf$, is in a sense initial among elliptic spectra, and as such is an important link between the homotopy groups of spheres and modular forms. A primary goal of this volume is to give a complete account, with full proofs, of the homotopy of $tmf$ and several $tmf$-module spectra by means of the classical Adams spectral sequence, thus verifying, correcting, and extending existing approaches. In the process, folklore results are made precise and generalized. Anderson and Brown-Comenetz duality, and the corresponding dualities in homotopy groups, are carefully proved. The volume also includes an account of the homotopy groups of spheres through degree 44, with complete proofs, except that the Adams conjecture is used without proof. Also presented are modern stable proofs of classical results which are hard to extract from the literature. Tools used in this book include a multiplicative spectral sequence generalizing a construction of Davis and Mahowald, and computer software which computes the cohomology of modules over the Steenrod algebra and products therein. Techniques from commutative algebra are used to make the calculation precise and finite. The $H$-infinity ring structure of the sphere and of $tmf$ are used to determine many differentials and relations.

Algebraic Geometry over C Rings

Algebraic Geometry over C    Rings
Author: Dominic Joyce
Publsiher: American Mathematical Soc.
Total Pages: 139
Release: 2019-09-05
Genre: Electronic Book
ISBN: 9781470436452

Download Algebraic Geometry over C Rings Book in PDF, Epub and Kindle

If X is a manifold then the R-algebra C∞(X) of smooth functions c:X→R is a C∞-ring. That is, for each smooth function f:Rn→R there is an n-fold operation Φf:C∞(X)n→C∞(X) acting by Φf:(c1,…,cn)↦f(c1,…,cn), and these operations Φf satisfy many natural identities. Thus, C∞(X) actually has a far richer structure than the obvious R-algebra structure. The author explains the foundations of a version of algebraic geometry in which rings or algebras are replaced by C∞-rings. As schemes are the basic objects in algebraic geometry, the new basic objects are C∞-schemes, a category of geometric objects which generalize manifolds and whose morphisms generalize smooth maps. The author also studies quasicoherent sheaves on C∞-schemes, and C∞-stacks, in particular Deligne-Mumford C∞-stacks, a 2-category of geometric objects generalizing orbifolds. Many of these ideas are not new: C∞-rings and C∞ -schemes have long been part of synthetic differential geometry. But the author develops them in new directions. In earlier publications, the author used these tools to define d-manifolds and d-orbifolds, “derived” versions of manifolds and orbifolds related to Spivak's “derived manifolds”.

Sampling in Combinatorial and Geometric Set Systems

Sampling in Combinatorial and Geometric Set Systems
Author: Nabil H. Mustafa
Publsiher: American Mathematical Society
Total Pages: 251
Release: 2022-01-14
Genre: Mathematics
ISBN: 9781470461560

Download Sampling in Combinatorial and Geometric Set Systems Book in PDF, Epub and Kindle

Understanding the behavior of basic sampling techniques and intrinsic geometric attributes of data is an invaluable skill that is in high demand for both graduate students and researchers in mathematics, machine learning, and theoretical computer science. The last ten years have seen significant progress in this area, with many open problems having been resolved during this time. These include optimal lower bounds for epsilon-nets for many geometric set systems, the use of shallow-cell complexity to unify proofs, simpler and more efficient algorithms, and the use of epsilon-approximations for construction of coresets, to name a few. This book presents a thorough treatment of these probabilistic, combinatorial, and geometric methods, as well as their combinatorial and algorithmic applications. It also revisits classical results, but with new and more elegant proofs. While mathematical maturity will certainly help in appreciating the ideas presented here, only a basic familiarity with discrete mathematics, probability, and combinatorics is required to understand the material.

Amenability of Discrete Groups by Examples

Amenability of Discrete Groups by Examples
Author: Kate Juschenko
Publsiher: American Mathematical Society
Total Pages: 180
Release: 2022-06-30
Genre: Mathematics
ISBN: 9781470470326

Download Amenability of Discrete Groups by Examples Book in PDF, Epub and Kindle

The main topic of the book is amenable groups, i.e., groups on which there exist invariant finitely additive measures. It was discovered that the existence or non-existence of amenability is responsible for many interesting phenomena such as, e.g., the Banach-Tarski Paradox about breaking a sphere into two spheres of the same radius. Since then, amenability has been actively studied and a number of different approaches resulted in many examples of amenable and non-amenable groups. In the book, the author puts together main approaches to study amenability. A novel feature of the book is that the exposition of the material starts with examples which introduce a method rather than illustrating it. This allows the reader to quickly move on to meaningful material without learning and remembering a lot of additional definitions and preparatory results; those are presented after analyzing the main examples. The techniques that are used for proving amenability in this book are mainly a combination of analytic and probabilistic tools with geometric group theory.

Asymptotic Geometric Analysis Part II

Asymptotic Geometric Analysis  Part II
Author: Shiri Artstein-Avidan,Apostolos Giannopoulos,Vitali D. Milman
Publsiher: American Mathematical Society
Total Pages: 645
Release: 2021-12-13
Genre: Mathematics
ISBN: 9781470463601

Download Asymptotic Geometric Analysis Part II Book in PDF, Epub and Kindle

This book is a continuation of Asymptotic Geometric Analysis, Part I, which was published as volume 202 in this series. Asymptotic geometric analysis studies properties of geometric objects, such as normed spaces, convex bodies, or convex functions, when the dimensions of these objects increase to infinity. The asymptotic approach reveals many very novel phenomena which influence other fields in mathematics, especially where a large data set is of main concern, or a number of parameters which becomes uncontrollably large. One of the important features of this new theory is in developing tools which allow studying high parametric families. Among the topics covered in the book are measure concentration, isoperimetric constants of log-concave measures, thin-shell estimates, stochastic localization, the geometry of Gaussian measures, volume inequalities for convex bodies, local theory of Banach spaces, type and cotype, the Banach-Mazur compactum, symmetrizations, restricted invertibility, and functional versions of geometric notions and inequalities.

Hopf Algebras and Galois Module Theory

Hopf Algebras and Galois Module Theory
Author: Lindsay N. Childs,Cornelius Greither,Kevin P. Keating,Alan Koch,Timothy Kohl,Paul J. Truman,Robert G. Underwood
Publsiher: American Mathematical Soc.
Total Pages: 311
Release: 2021-11-10
Genre: Education
ISBN: 9781470465162

Download Hopf Algebras and Galois Module Theory Book in PDF, Epub and Kindle

Hopf algebras have been shown to play a natural role in studying questions of integral module structure in extensions of local or global fields. This book surveys the state of the art in Hopf-Galois theory and Hopf-Galois module theory and can be viewed as a sequel to the first author's book, Taming Wild Extensions: Hopf Algebras and Local Galois Module Theory, which was published in 2000. The book is divided into two parts. Part I is more algebraic and focuses on Hopf-Galois structures on Galois field extensions, as well as the connection between this topic and the theory of skew braces. Part II is more number theoretical and studies the application of Hopf algebras to questions of integral module structure in extensions of local or global fields. Graduate students and researchers with a general background in graduate-level algebra, algebraic number theory, and some familiarity with Hopf algebras will appreciate the overview of the current state of this exciting area and the suggestions for numerous avenues for further research and investigation.