A Mathematical Modeling Approach from Nonlinear Dynamics to Complex Systems

A Mathematical Modeling Approach from Nonlinear Dynamics to Complex Systems
Author: Elbert E. N. Macau
Publsiher: Springer
Total Pages: 228
Release: 2018-06-14
Genre: Technology & Engineering
ISBN: 9783319785127

Download A Mathematical Modeling Approach from Nonlinear Dynamics to Complex Systems Book in PDF, Epub and Kindle

This book collects recent developments in nonlinear and complex systems. It provides up-to-date theoretic developments and new techniques based on a nonlinear dynamical systems approach that can be used to model and understand complex behavior in nonlinear dynamical systems. It covers symmetry groups, conservation laws, risk reduction management, barriers in Hamiltonian systems, and synchronization and chaotic transient. Illustrating mathematical modeling applications to nonlinear physics and nonlinear engineering, the book is ideal for academic and industrial researchers concerned with machinery and controls, manufacturing, and controls. · Introduces new concepts for understanding and modeling complex systems; · Explains risk reduction management in complex systems; · Examines the symmetry group approach to understanding complex systems; · Illustrates the relation between transient chaos and crises.

Model Emergent Dynamics in Complex Systems

Model Emergent Dynamics in Complex Systems
Author: A. J. Roberts
Publsiher: SIAM
Total Pages: 750
Release: 2024
Genre: Mathematics
ISBN: 9781611973563

Download Model Emergent Dynamics in Complex Systems Book in PDF, Epub and Kindle

Arising out of the growing interest in and applications of modern dynamical systems theory, this book explores how to derive relatively simple dynamical equations that model complex physical interactions. The author?s objectives are to use sound theory to explore algebraic techniques, develop interesting applications, and discover general modeling principles. Model Emergent Dynamics in Complex Systems unifies into one powerful and coherent approach the many varied extant methods for mathematical model reduction and approximation. Using mathematical models at various levels of resolution and complexity, the book establishes the relationships between such multiscale models and clarifying difficulties and apparent paradoxes and addresses model reduction for systems, resolves initial conditions, and illuminates control and uncertainty. The basis for the author?s methodology is the theory and the geometric picture of both coordinate transforms and invariant manifolds in dynamical systems; in particular, center and slow manifolds are heavily used. The wonderful aspect of this approach is the range of geometric interpretations of the modeling process that it produces?simple geometric pictures inspire sound methods of analysis and construction. Further, pictures drawn of state spaces also provide a route to better assess a model?s limitations and strengths. Geometry and algebra form a powerful partnership and coordinate transforms and manifolds provide a powerfully enhanced and unified view of a swathe of other complex system modeling methodologies such as averaging, homogenization, multiple scales, singular perturbations, two timing, and WKB theory.

Applications of Nonlinear Dynamics

Applications of Nonlinear Dynamics
Author: Visarath In,Patrick Longhini,Antonio Palacios
Publsiher: Springer Science & Business Media
Total Pages: 464
Release: 2009-02-11
Genre: Technology & Engineering
ISBN: 9783540856320

Download Applications of Nonlinear Dynamics Book in PDF, Epub and Kindle

The ?eld of applied nonlinear dynamics has attracted scientists and engineers across many different disciplines to develop innovative ideas and methods to study c- plex behavior exhibited by relatively simple systems. Examples include: population dynamics, ?uidization processes, applied optics, stochastic resonance, ?ocking and ?ightformations,lasers,andmechanicalandelectricaloscillators. Acommontheme among these and many other examples is the underlying universal laws of nonl- ear science that govern the behavior, in space and time, of a given system. These laws are universal in the sense that they transcend the model-speci?c features of a system and so they can be readily applied to explain and predict the behavior of a wide ranging phenomena, natural and arti?cial ones. Thus the emphasis in the past decades has been in explaining nonlinear phenomena with signi?cantly less att- tion paid to exploiting the rich behavior of nonlinear systems to design and fabricate new devices that can operate more ef?ciently. Recently, there has been a series of meetings on topics such as Experimental Chaos, Neural Coding, and Stochastic Resonance, which have brought together many researchers in the ?eld of nonlinear dynamics to discuss, mainly, theoretical ideas that may have the potential for further implementation. In contrast, the goal of the 2007 ICAND (International Conference on Applied Nonlinear Dynamics) was focused more sharply on the implementation of theoretical ideas into actual - vices and systems.

Nonlinear Dynamics in Complex Systems

Nonlinear Dynamics in Complex Systems
Author: Armin Fuchs
Publsiher: Springer Science & Business Media
Total Pages: 237
Release: 2012-09-22
Genre: Technology & Engineering
ISBN: 9783642335525

Download Nonlinear Dynamics in Complex Systems Book in PDF, Epub and Kindle

With many areas of science reaching across their boundaries and becoming more and more interdisciplinary, students and researchers in these fields are confronted with techniques and tools not covered by their particular education. Especially in the life- and neurosciences quantitative models based on nonlinear dynamics and complex systems are becoming as frequently implemented as traditional statistical analysis. Unfamiliarity with the terminology and rigorous mathematics may discourage many scientists to adopt these methods for their own work, even though such reluctance in most cases is not justified. This book bridges this gap by introducing the procedures and methods used for analyzing nonlinear dynamical systems. In Part I, the concepts of fixed points, phase space, stability and transitions, among others, are discussed in great detail and implemented on the basis of example elementary systems. Part II is devoted to specific, non-trivial applications: coordination of human limb movement (Haken-Kelso-Bunz model), self-organization and pattern formation in complex systems (Synergetics), and models of dynamical properties of neurons (Hodgkin-Huxley, Fitzhugh-Nagumo and Hindmarsh-Rose). Part III may serve as a refresher and companion of some mathematical basics that have been forgotten or were not covered in basic math courses. Finally, the appendix contains an explicit derivation and basic numerical methods together with some programming examples as well as solutions to the exercises provided at the end of certain chapters. Throughout this book all derivations are as detailed and explicit as possible, and everybody with some knowledge of calculus should be able to extract meaningful guidance follow and apply the methods of nonlinear dynamics to their own work. “This book is a masterful treatment, one might even say a gift, to the interdisciplinary scientist of the future.” “With the authoritative voice of a genuine practitioner, Fuchs is a master teacher of how to handle complex dynamical systems.” “What I find beautiful in this book is its clarity, the clear definition of terms, every step explained simply and systematically.” (J.A.Scott Kelso, excerpts from the foreword)

Mathematical Methods in Modern Complexity Science

Mathematical Methods in Modern Complexity Science
Author: Dimitri Volchenkov,J. A. Tenreiro Machado
Publsiher: Springer Nature
Total Pages: 202
Release: 2022-03-14
Genre: Science
ISBN: 9783030794125

Download Mathematical Methods in Modern Complexity Science Book in PDF, Epub and Kindle

This book presents recent developments in nonlinear and complex systems. It provides recent theoretic developments and new techniques based on a nonlinear dynamical systems approach that can be used to model and understand complex behavior in nonlinear dynamical systems. It covers information theory, relativistic chaotic dynamics, data analysis, relativistic chaotic dynamics, solvability issues in integro-differential equations, and inverse problems for parabolic differential equations, synchronization and chaotic transient. Presents new concepts for understanding and modeling complex systems

Mathematical Modeling

Mathematical Modeling
Author: Ludmilla A. Uvarova,Anatolii V. Latyshev
Publsiher: Springer Science & Business Media
Total Pages: 285
Release: 2013-03-14
Genre: Mathematics
ISBN: 9781475733976

Download Mathematical Modeling Book in PDF, Epub and Kindle

This volume contains review articles and original results obtained in various fields of modern science using mathematical simulation methods. The basis of the articles are the plenary and some section reports that were made and discussed at the Fourth International Mathematical Simulation Conference, held in Moscow on June 27 through July 1, 2000. The conference was devoted to the following scientific areas: • mathematical and computer discrete systems models; • non-linear excitation in condensed media; • complex systems evolution; • mathematical models in economics; • non-equilibrium processes kinematics; • dynamics and structure of the molecular and biomolecular systems; • mathematical transfer models in non-linear systems; • numerical simulation and algorithms; • turbulence and determined chaos; • chemical physics of polymer. This conference was supported by the Russian Ministry of Education, Russian foundation for Basic Research and Federal Program "Integration". This volume contains the following sections: 1. models of non-linear phenomena in physics; 2. numerical methods and computer simulations; 3. mathematical computer models of discrete systems; 4. mathematical models in economics; 5. non-linear models in chemical physics and physical chemistry; 6. mathematical models of transport processes in complex systems. In Sections One and Five a number of fundamental and sufficiently general problems, concerning real physical and physical-chemical systems simulation, is discussed.

Model Emergent Dynamics in Complex Systems

Model Emergent Dynamics in Complex Systems
Author: Anthony John Roberts
Publsiher: Unknown
Total Pages: 748
Release: 2015
Genre: Computational complexity
ISBN: 152310936X

Download Model Emergent Dynamics in Complex Systems Book in PDF, Epub and Kindle

Mathematical Methods in Engineering

Mathematical Methods in Engineering
Author: Kenan Taş,Dumitru Baleanu,J. A. Tenreiro Machado
Publsiher: Springer
Total Pages: 264
Release: 2018-08-02
Genre: Technology & Engineering
ISBN: 9783319909721

Download Mathematical Methods in Engineering Book in PDF, Epub and Kindle

This book presents recent developments in nonlinear dynamics with an emphasis on complex systems. The volume illustrates new methods to characterize the solutions of nonlinear dynamics associated with complex systems. This book contains the following topics: new solutions of the functional equations, optimization algorithm for traveling salesman problem, fractals, control, fractional calculus models, fractional discretization, local fractional partial differential equations and their applications, and solutions of fractional kinetic equations.