Analytical Modelling of Breakdown Effect in Graphene Nanoribbon Field Effect Transistor

Analytical Modelling of Breakdown Effect in Graphene Nanoribbon Field Effect Transistor
Author: Iraj Sadegh Amiri,Mahdiar Ghadiry
Publsiher: Springer
Total Pages: 92
Release: 2017-10-29
Genre: Technology & Engineering
ISBN: 9789811065507

Download Analytical Modelling of Breakdown Effect in Graphene Nanoribbon Field Effect Transistor Book in PDF, Epub and Kindle

This book discusses analytical approaches and modeling of the breakdown voltage (BV) effects on graphene-based transistors. It presents semi-analytical models for lateral electric field, length of velocity saturation region (LVSR), ionization coefficient (α), and breakdown voltage (BV) of single and double-gate graphene nanoribbon field effect transistors (GNRFETs). The application of Gauss’s law at drain and source regions is employed in order to derive surface potential and lateral electric field equations. LVSR is then calculated as a solution of surface potential at saturation condition. The ionization coefficient is modelled and calculated by deriving equations for probability of collisions in ballistic and drift modes based on the lucky drift theory of ionization. The threshold energy of ionization is computed using simulation and an empirical equation is derived semi-analytically. Lastly avalanche breakdown condition is employed to calculate the lateral BV. On the basis of this, simple analytical and semi-analytical models are proposed for the LVSR and BV, which could be used in the design and optimization of semiconductor devices and sensors. The proposed equations are used to examine BV at different channel lengths, supply voltages, oxide thickness, GNR widths, and gate voltages. Simulation results show that the operating voltage of FETs could be as low as 0.25 V in order to prevent breakdown. However, after optimization, it can go as high as 1.5 V. This work is useful for researchers working in the area of graphene nanoribbon-based transistors.

Advanced Nanoelectronics

Advanced Nanoelectronics
Author: Razali Ismail,Mohammad Taghi Ahmadi,Sohail Anwar
Publsiher: CRC Press
Total Pages: 456
Release: 2018-09-03
Genre: Science
ISBN: 9781439856819

Download Advanced Nanoelectronics Book in PDF, Epub and Kindle

While theories based on classical physics have been very successful in helping experimentalists design microelectronic devices, new approaches based on quantum mechanics are required to accurately model nanoscale transistors and to predict their characteristics even before they are fabricated. Advanced Nanoelectronics provides research information on advanced nanoelectronics concepts, with a focus on modeling and simulation. Featuring contributions by researchers actively engaged in nanoelectronics research, it develops and applies analytical formulations to investigate nanoscale devices. The book begins by introducing the basic ideas related to quantum theory that are needed to better understand nanoscale structures found in nanoelectronics, including graphenes, carbon nanotubes, and quantum wells, dots, and wires. It goes on to highlight some of the key concepts required to understand nanotransistors. These concepts are then applied to the carbon nanotube field effect transistor (CNTFET). Several chapters cover graphene, an unzipped form of CNT that is the recently discovered allotrope of carbon that has gained a tremendous amount of scientific and technological interest. The book discusses the development of the graphene nanoribbon field effect transistor (GNRFET) and its use as a possible replacement to overcome the CNT chirality challenge. It also examines silicon nanowire (SiNW) as a new candidate for achieving the downscaling of devices. The text describes the modeling and fabrication of SiNW, including a new top-down fabrication technique. Strained technology, which changes the properties of device materials rather than changing the device geometry, is also discussed. The book ends with a look at the technical and economic challenges that face the commercialization of nanoelectronics and what universities, industries, and government can do to lower the barriers. A useful resource for professionals, researchers, and scientists, this work brings together state-of-the-art technical and scientific information on important topics in advanced nanoelectronics.

Graphene Science Handbook Six Volume Set

Graphene Science Handbook  Six Volume Set
Author: Mahmood Aliofkhazraei,Nasar Ali,William I. Milne,Cengiz S. Ozkan,Stanislaw Mitura,Juana L. Gervasoni
Publsiher: CRC Press
Total Pages: 3379
Release: 2016-04-26
Genre: Science
ISBN: 9781466591196

Download Graphene Science Handbook Six Volume Set Book in PDF, Epub and Kindle

Graphene is the strongest material ever studied and can be an efficient substitute for silicon. This six-volume handbook focuses on fabrication methods, nanostructure and atomic arrangement, electrical and optical properties, mechanical and chemical properties, size-dependent properties, and applications and industrialization. There is no other major reference work of this scope on the topic of graphene, which is one of the most researched materials of the twenty-first century. The set includes contributions from top researchers in the field and a foreword written by two Nobel laureates in physics. Volumes in the set: K20503 Graphene Science Handbook: Mechanical and Chemical Properties (ISBN: 9781466591233) K20505 Graphene Science Handbook: Fabrication Methods (ISBN: 9781466591271) K20507 Graphene Science Handbook: Electrical and Optical Properties (ISBN: 9781466591318) K20508 Graphene Science Handbook: Applications and Industrialization (ISBN: 9781466591332) K20509 Graphene Science Handbook: Size-Dependent Properties (ISBN: 9781466591356) K20510 Graphene Science Handbook: Nanostructure and Atomic Arrangement (ISBN: 9781466591370)

Graphene Science Handbook

Graphene Science Handbook
Author: Mahmood Aliofkhazraei,Nasar Ali,William I. Milne,Cengiz S. Ozkan,Stanislaw Mitura,Juana L. Gervasoni
Publsiher: CRC Press
Total Pages: 474
Release: 2016-04-27
Genre: Science
ISBN: 9781466591349

Download Graphene Science Handbook Book in PDF, Epub and Kindle

Explore the Practical Applications and Promising Developments of Graphene The Graphene Science Handbook is a six-volume set that describes graphene’s special structural, electrical, and chemical properties. The book considers how these properties can be used in different applications (including the development of batteries, fuel cells, photovoltaic cells, and supercapacitors based on graphene) and produced on a massive and global scale. Volume One: Fabrication Methods Volume Two: Nanostructure and Atomic Arrangement Volume Three: Electrical and Optical Properties Volume Four: Mechanical and Chemical Properties Volume Five: Size-Dependent Properties Volume Six: Applications and Industrialization This handbook describes the fabrication methods of graphene; the nanostructure and atomic arrangement of graphene; graphene’s electrical and optical properties; the mechanical and chemical properties of graphene; the size effects in graphene, characterization, and applications based on size-affected properties; and the application and industrialization of graphene. Volume six is dedicated to the application and industrialization of graphene and covers: The design of graphene- and biomolecule-based nanosensors and nanodevices The use of graphene-based field-effect-transistor (GFET)-like structures as sensing substrates and DNA aptamers as sensing elements Recent advances in graphene-based DNA sensors The antibacterial properties of graphene-based nanomaterial (NM) The chemical and physical properties of graphene and its current uses The development of sensitive and selective field-effect transistors (FET) biosensors based on graphene The unique properties of ordered graphene (G) Various methods currently employed for the production of graphene nanocomposites The supramolecular chemistry of graphene derivatives, and more

Springer Handbook of Nanotechnology

Springer Handbook of Nanotechnology
Author: Bharat Bhushan
Publsiher: Springer
Total Pages: 1500
Release: 2017-11-05
Genre: Technology & Engineering
ISBN: 9783662543573

Download Springer Handbook of Nanotechnology Book in PDF, Epub and Kindle

This comprehensive handbook has become the definitive reference work in the field of nanoscience and nanotechnology, and this 4th edition incorporates a number of recent new developments. It integrates nanofabrication, nanomaterials, nanodevices, nanomechanics, nanotribology, materials science, and reliability engineering knowledge in just one volume. Furthermore, it discusses various nanostructures; micro/nanofabrication; micro/nanodevices and biomicro/nanodevices, as well as scanning probe microscopy; nanotribology and nanomechanics; molecularly thick films; industrial applications and nanodevice reliability; societal, environmental, health and safety issues; and nanotechnology education. In this new edition, written by an international team of over 140 distinguished experts and put together by an experienced editor with a comprehensive understanding of the field, almost all the chapters are either new or substantially revised and expanded, with new topics of interest added. It is an essential resource for anyone working in the rapidly evolving field of key technology, including mechanical and electrical engineers, materials scientists, physicists, and chemists.

Carbon Nanotubes for Interconnects

Carbon Nanotubes for Interconnects
Author: Aida Todri-Sanial,Jean Dijon,Antonio Maffucci
Publsiher: Springer
Total Pages: 333
Release: 2016-07-09
Genre: Technology & Engineering
ISBN: 9783319297460

Download Carbon Nanotubes for Interconnects Book in PDF, Epub and Kindle

This book provides a single-source reference on the use of carbon nanotubes (CNTs) as interconnect material for horizontal, on-chip and 3D interconnects. The authors demonstrate the uses of bundles of CNTs, as innovative conducting material to fabricate interconnect through-silicon vias (TSVs), in order to improve the performance, reliability and integration of 3D integrated circuits (ICs). This book will be first to provide a coherent overview of exploiting carbon nanotubes for 3D interconnects covering aspects from processing, modeling, simulation, characterization and applications. Coverage also includes a thorough presentation of the application of CNTs as horizontal on-chip interconnects which can potentially revolutionize the nanoelectronics industry. This book is a must-read for anyone interested in the state-of-the-art on exploiting carbon nanotubes for interconnects for both 2D and 3D integrated circuits.

Carbon Nanotube and Graphene Nanoribbon Interconnects

Carbon Nanotube and Graphene Nanoribbon Interconnects
Author: Debaprasad Das,Hafizur Rahaman
Publsiher: CRC Press
Total Pages: 196
Release: 2017-12-19
Genre: Technology & Engineering
ISBN: 9781351831086

Download Carbon Nanotube and Graphene Nanoribbon Interconnects Book in PDF, Epub and Kindle

An Alternative to Copper-Based Interconnect Technology With an increase in demand for more circuit components on a single chip, there is a growing need for nanoelectronic devices and their interconnects (a physical connecting medium made of thin metal films between several electrical nodes in a semiconducting chip that transmit signals from one point to another without any distortion). Carbon Nanotube and Graphene Nanoribbon Interconnects explores two new important carbon nanomaterials, carbon nanotube (CNT) and graphene nanoribbon (GNR), and compares them with that of copper-based interconnects. These nanomaterials show almost 1,000 times more current-carrying capacity and significantly higher mean free path than copper. Due to their remarkable properties, CNT and GNR could soon replace traditional copper interconnects. Dedicated to proving their benefits, this book covers the basic theory of CNT and GNR, and provides a comprehensive analysis of the CNT- and GNR-based VLSI interconnects at nanometric dimensions. Explore the Potential Applications of CNT and Graphene for VLSI Circuits The book starts off with a brief introduction of carbon nanomaterials, discusses the latest research, and details the modeling and analysis of CNT and GNR interconnects. It also describes the electrical, thermal, and mechanical properties, and structural behavior of these materials. In addition, it chronicles the progression of these fundamental properties, explores possible engineering applications and growth technologies, and considers applications for CNT and GNR apart from their use in VLSI circuits. Comprising eight chapters this text: Covers the basics of carbon nanotube and graphene nanoribbon Discusses the growth and characterization of carbon nanotube and graphene nanoribbon Presents the modeling of CNT and GNR as future VLSI interconnects Examines the applicability of CNT and GNR in terms of several analysis works Addresses the timing and frequency response of the CNT and GNR interconnects Explores the signal integrity analysis for CNT and GNR interconnects Models and analyzes the applicability of CNT and GNR as power interconnects Considers the future scope of CNT and GNR Beneficial to VLSI designers working in this area, Carbon Nanotube and Graphene Nanoribbon Interconnects provides a complete understanding of carbon-based materials and interconnect technology, and equips the reader with sufficient knowledge about the future scope of research and development for this emerging topic.

Advanced Indium Arsenide Based HEMT Architectures for Terahertz Applications

Advanced Indium Arsenide Based HEMT Architectures for Terahertz Applications
Author: N. Mohankumar
Publsiher: CRC Press
Total Pages: 114
Release: 2021-09-28
Genre: Science
ISBN: 9781000454567

Download Advanced Indium Arsenide Based HEMT Architectures for Terahertz Applications Book in PDF, Epub and Kindle

High electron mobility transistor (HEMT) has better performance potential than the conventional MOSFETs. Further, InAs is a perfect candidate for the HEMT device architecture owing to its peak electron mobility. Advanced Indium Arsenide-based HEMT Architectures for Terahertz Applications characterizes the HEMT based on InAs III-V material to achieve outstanding current and frequency performance. This book explains different types of device architectures available to enhance performance including InAs-based single gate (SG) HEMT and double gate (DG) HEMT. The noise analysis of InAs-based SG and DG-HEMT is also discussed. The main goal of this book is to characterize the InAs device to achieve terahertz frequency regime with proper device parameters. Features: Explains the influence of InAs material in the performance of HEMTs and MOS-HEMTs. Covers novel indium arsenide architectures for achieving terahertz frequencies Discusses impact of device parameters on frequency response Illustrates noise characterization of optimized indium arsenide HEMTs Introduces terahertz electronics including sources for terahertz applications. This book is of special interest to researchers and graduate students in Electronics Engineering, High Electron Mobility Transistors, Semi-conductors, Communications, and Nanodevices.