Applications of Linear and Nonlinear Models

Applications of Linear and Nonlinear Models
Author: Erik W. Grafarend,Silvelyn Zwanzig,Joseph L. Awange
Publsiher: Springer Nature
Total Pages: 1127
Release: 2022-10-01
Genre: Science
ISBN: 9783030945985

Download Applications of Linear and Nonlinear Models Book in PDF, Epub and Kindle

This book provides numerous examples of linear and nonlinear model applications. Here, we present a nearly complete treatment of the Grand Universe of linear and weakly nonlinear regression models within the first 8 chapters. Our point of view is both an algebraic view and a stochastic one. For example, there is an equivalent lemma between a best, linear uniformly unbiased estimation (BLUUE) in a Gauss–Markov model and a least squares solution (LESS) in a system of linear equations. While BLUUE is a stochastic regression model, LESS is an algebraic solution. In the first six chapters, we concentrate on underdetermined and overdetermined linear systems as well as systems with a datum defect. We review estimators/algebraic solutions of type MINOLESS, BLIMBE, BLUMBE, BLUUE, BIQUE, BLE, BIQUE, and total least squares. The highlight is the simultaneous determination of the first moment and the second central moment of a probability distribution in an inhomogeneous multilinear estimation by the so-called E-D correspondence as well as its Bayes design. In addition, we discuss continuous networks versus discrete networks, use of Grassmann–Plucker coordinates, criterion matrices of type Taylor–Karman as well as FUZZY sets. Chapter seven is a speciality in the treatment of an overjet. This second edition adds three new chapters: (1) Chapter on integer least squares that covers (i) model for positioning as a mixed integer linear model which includes integer parameters. (ii) The general integer least squares problem is formulated, and the optimality of the least squares solution is shown. (iii) The relation to the closest vector problem is considered, and the notion of reduced lattice basis is introduced. (iv) The famous LLL algorithm for generating a Lovasz reduced basis is explained. (2) Bayes methods that covers (i) general principle of Bayesian modeling. Explain the notion of prior distribution and posterior distribution. Choose the pragmatic approach for exploring the advantages of iterative Bayesian calculations and hierarchical modeling. (ii) Present the Bayes methods for linear models with normal distributed errors, including noninformative priors, conjugate priors, normal gamma distributions and (iii) short outview to modern application of Bayesian modeling. Useful in case of nonlinear models or linear models with no normal distribution: Monte Carlo (MC), Markov chain Monte Carlo (MCMC), approximative Bayesian computation (ABC) methods. (3) Error-in-variables models, which cover: (i) Introduce the error-in-variables (EIV) model, discuss the difference to least squares estimators (LSE), (ii) calculate the total least squares (TLS) estimator. Summarize the properties of TLS, (iii) explain the idea of simulation extrapolation (SIMEX) estimators, (iv) introduce the symmetrized SIMEX (SYMEX) estimator and its relation to TLS, and (v) short outview to nonlinear EIV models. The chapter on algebraic solution of nonlinear system of equations has also been updated in line with the new emerging field of hybrid numeric-symbolic solutions to systems of nonlinear equations, ermined system of nonlinear equations on curved manifolds. The von Mises–Fisher distribution is characteristic for circular or (hyper) spherical data. Our last chapter is devoted to probabilistic regression, the special Gauss–Markov model with random effects leading to estimators of type BLIP and VIP including Bayesian estimation. A great part of the work is presented in four appendices. Appendix A is a treatment, of tensor algebra, namely linear algebra, matrix algebra, and multilinear algebra. Appendix B is devoted to sampling distributions and their use in terms of confidence intervals and confidence regions. Appendix C reviews the elementary notions of statistics, namely random events and stochastic processes. Appendix D introduces the basics of Groebner basis algebra, its careful definition, the Buchberger algorithm, especially the C. F. Gauss combinatorial algorithm.

Applications of Linear and Nonlinear Models

Applications of Linear and Nonlinear Models
Author: Erik Grafarend,Joseph L. Awange
Publsiher: Springer Science & Business Media
Total Pages: 1026
Release: 2012-08-15
Genre: Science
ISBN: 9783642222412

Download Applications of Linear and Nonlinear Models Book in PDF, Epub and Kindle

Here we present a nearly complete treatment of the Grand Universe of linear and weakly nonlinear regression models within the first 8 chapters. Our point of view is both an algebraic view as well as a stochastic one. For example, there is an equivalent lemma between a best, linear uniformly unbiased estimation (BLUUE) in a Gauss-Markov model and a least squares solution (LESS) in a system of linear equations. While BLUUE is a stochastic regression model, LESS is an algebraic solution. In the first six chapters we concentrate on underdetermined and overdeterimined linear systems as well as systems with a datum defect. We review estimators/algebraic solutions of type MINOLESS, BLIMBE, BLUMBE, BLUUE, BIQUE, BLE, BIQUE and Total Least Squares. The highlight is the simultaneous determination of the first moment and the second central moment of a probability distribution in an inhomogeneous multilinear estimation by the so called E-D correspondence as well as its Bayes design. In addition, we discuss continuous networks versus discrete networks, use of Grassmann-Pluecker coordinates, criterion matrices of type Taylor-Karman as well as FUZZY sets. Chapter seven is a speciality in the treatment of an overdetermined system of nonlinear equations on curved manifolds. The von Mises-Fisher distribution is characteristic for circular or (hyper) spherical data. Our last chapter eight is devoted to probabilistic regression, the special Gauss-Markov model with random effects leading to estimators of type BLIP and VIP including Bayesian estimation. A great part of the work is presented in four Appendices. Appendix A is a treatment, of tensor algebra, namely linear algebra, matrix algebra and multilinear algebra. Appendix B is devoted to sampling distributions and their use in terms of confidence intervals and confidence regions. Appendix C reviews the elementary notions of statistics, namely random events and stochastic processes. Appendix D introduces the basics of Groebner basis algebra, its careful definition, the Buchberger Algorithm, especially the C. F. Gauss combinatorial algorithm.

Linear and Nonlinear Models for the Analysis of Repeated Measurements

Linear and Nonlinear Models for the Analysis of Repeated Measurements
Author: Edward Vonesh,Vernon M. Chinchilli
Publsiher: CRC Press
Total Pages: 590
Release: 1996-11-01
Genre: Mathematics
ISBN: 0824782488

Download Linear and Nonlinear Models for the Analysis of Repeated Measurements Book in PDF, Epub and Kindle

Integrates the latest theory, methodology and applications related to the design and analysis of repeated measurement. The text covers a broad range of topics, including the analysis of repeated measures design, general crossover designs, and linear and nonlinear regression models. It also contains a 3.5 IBM compatible disk, with software to implement immediately the techniques.

Linear and Nonlinear Models

Linear and Nonlinear Models
Author: Erik W. Grafarend
Publsiher: Unknown
Total Pages: 0
Release: 2006
Genre: Mathematical models
ISBN: 3110162164

Download Linear and Nonlinear Models Book in PDF, Epub and Kindle

This monograph contains a thorough treatment of methods for solving over- and underdetermined systems of equations, e.g. the minimum norm solution method with respect to weighted norms. The considered equations can be nonlinear or linear, and deterministic models as well as probabilistic ones are considered. An extensive appendix provides all necessary prerequisites like matrix algebra, matrix analysis and Lagrange multipliers, and a long list of references is also included.

Applications of Nonlinear Dynamics

Applications of Nonlinear Dynamics
Author: Visarath In,Patrick Longhini,Antonio Palacios
Publsiher: Springer Science & Business Media
Total Pages: 464
Release: 2009-02-11
Genre: Technology & Engineering
ISBN: 9783540856320

Download Applications of Nonlinear Dynamics Book in PDF, Epub and Kindle

The ?eld of applied nonlinear dynamics has attracted scientists and engineers across many different disciplines to develop innovative ideas and methods to study c- plex behavior exhibited by relatively simple systems. Examples include: population dynamics, ?uidization processes, applied optics, stochastic resonance, ?ocking and ?ightformations,lasers,andmechanicalandelectricaloscillators. Acommontheme among these and many other examples is the underlying universal laws of nonl- ear science that govern the behavior, in space and time, of a given system. These laws are universal in the sense that they transcend the model-speci?c features of a system and so they can be readily applied to explain and predict the behavior of a wide ranging phenomena, natural and arti?cial ones. Thus the emphasis in the past decades has been in explaining nonlinear phenomena with signi?cantly less att- tion paid to exploiting the rich behavior of nonlinear systems to design and fabricate new devices that can operate more ef?ciently. Recently, there has been a series of meetings on topics such as Experimental Chaos, Neural Coding, and Stochastic Resonance, which have brought together many researchers in the ?eld of nonlinear dynamics to discuss, mainly, theoretical ideas that may have the potential for further implementation. In contrast, the goal of the 2007 ICAND (International Conference on Applied Nonlinear Dynamics) was focused more sharply on the implementation of theoretical ideas into actual - vices and systems.

Nonlinear Regression with R

Nonlinear Regression with R
Author: Christian Ritz,Jens Carl Streibig
Publsiher: Springer Science & Business Media
Total Pages: 151
Release: 2008-12-11
Genre: Mathematics
ISBN: 9780387096162

Download Nonlinear Regression with R Book in PDF, Epub and Kindle

- Coherent and unified treatment of nonlinear regression with R. - Example-based approach. - Wide area of application.

Modeling and Simulation in Ecotoxicology with Applications in MATLAB and Simulink

Modeling and Simulation in Ecotoxicology with Applications in MATLAB and Simulink
Author: Kenneth R. Dixon
Publsiher: CRC Press
Total Pages: 270
Release: 2016-04-19
Genre: Mathematics
ISBN: 9781439855188

Download Modeling and Simulation in Ecotoxicology with Applications in MATLAB and Simulink Book in PDF, Epub and Kindle

Exploring roles critical to environmental toxicology, Modeling and Simulation in Ecotoxicology with Applications in MATLAB and Simulink covers the steps in modeling and simulation from problem conception to validation and simulation analysis. Using the MATLAB and Simulink programming languages, the book presents examples of mathematical functions a

Optimal Experimental Design for Non Linear Models

Optimal Experimental Design for Non Linear Models
Author: Christos P. Kitsos
Publsiher: Unknown
Total Pages: 114
Release: 2014-01-31
Genre: Electronic Book
ISBN: 3642452884

Download Optimal Experimental Design for Non Linear Models Book in PDF, Epub and Kindle