Remote Sensing of Atmospheric Conditions for Wind Energy Applications

Remote Sensing of Atmospheric Conditions for Wind Energy Applications
Author: Charlotte Bay Hasager,Mikael Sjöholm
Publsiher: MDPI
Total Pages: 290
Release: 2019-05-24
Genre: Technology & Engineering
ISBN: 9783038979425

Download Remote Sensing of Atmospheric Conditions for Wind Energy Applications Book in PDF, Epub and Kindle

This Special Issue “Atmospheric Conditions for Wind Energy Applications” hosts papers on aspects of remote sensing for atmospheric conditions for wind energy applications. Wind lidar technology is presented from a theoretical view on the coherent focused Doppler lidar principles. Furthermore, wind lidar for applied use for wind turbine control, wind farm wake, and gust characterizations is presented, as well as methods to reduce uncertainty when using lidar in complex terrain. Wind lidar observations are used to validate numerical model results. Wind Doppler lidar mounted on aircraft used for observing winds in hurricane conditions and Doppler radar on the ground used for very short-term wind forecasting are presented. For the offshore environment, floating lidar data processing is presented as well as an experiment with wind-profiling lidar on a ferry for model validation. Assessments of wind resources in the coastal zone using wind-profiling lidar and global wind maps using satellite data are presented.

Offshore Wind Farms

Offshore Wind Farms
Author: Chong Ng,Li Ran
Publsiher: Woodhead Publishing
Total Pages: 654
Release: 2016-03-03
Genre: Technology & Engineering
ISBN: 9780081007808

Download Offshore Wind Farms Book in PDF, Epub and Kindle

Offshore Wind Farms: Technologies, Design and Operation provides the latest information on offshore wind energy, one of Europe’s most promising and quickly maturing industries, and a potentially huge untapped renewable energy source which could contribute significantly towards EU 20-20-20 renewable energy generation targets. It has been estimated that by 2030 Europe could have 150GW of offshore wind energy capacity, meeting 14% of our power demand. Offshore Wind Farms: Technologies, Design and Operation provides a comprehensive overview of the emerging technologies, design, and operation of offshore wind farms. Part One introduces offshore wind energy as well as offshore wind turbine siting with expert analysis of economics, wind resources, and remote sensing technologies. The second section provides an overview of offshore wind turbine materials and design, while part three outlines the integration of wind farms into power grids with insights to cabling and energy storage. The final section of the book details the installation and operation of offshore wind farms with chapters on condition monitoring and health and safety, amongst others. Provides an in-depth, multi-contributor, comprehensive overview of offshore technologies, including design, monitoring, and operation Edited by respected and leading experts in the field, with experience in both academia and industry Covers a highly relevant and important topic given the great potential of offshore wind power in contributing significantly to EU 20-20-20 renewable energy targets

Wind Energy Handbook

Wind Energy Handbook
Author: Tony L. Burton,Nick Jenkins,Ervin Bossanyi,David Sharpe,Michael Graham
Publsiher: John Wiley & Sons
Total Pages: 1008
Release: 2021-04-22
Genre: Science
ISBN: 9781119451150

Download Wind Energy Handbook Book in PDF, Epub and Kindle

Fully updated and authoritative reference to wind energy technology written by leading academic and industry professionals The newly revised Third Edition of the Wind Energy Handbook delivers a fully updated treatment of key developments in wind technology since the publication of the book’s Second Edition in 2011. The criticality of wakes within wind farms is addressed by the addition of an entirely new chapter on wake effects, including ‘engineering’ wake models and wake control. Offshore, attention is focused for the first time on the design of floating support structures, and the new ‘PISA’ method for monopile geotechnical design is introduced. The coverage of blade design has been completely rewritten, with an expanded description of laminate fatigue properties and new sections on manufacturing methods, blade testing, leading-edge erosion and bend-twist coupling. These are complemented by new sections on blade add-ons and noise in the aerodynamics chapters, which now also include a description of the Leishman-Beddoes dynamic stall model and an extended introduction to Computational Fluid Dynamics analysis. The importance of the environmental impact of wind farms both on- and offshore is recognized by expanded coverage, and the requirements of the Grid Codes to ensure wind energy plays its full role in the power system are described. The conceptual design chapter has been extended to include a number of novel concepts, including low induction rotors, multiple rotor structures, superconducting generators and magnetic gearboxes. References and further reading resources are included throughout the book and have been updated to cover the latest literature. As in previous editions, the core subjects constituting the essential background to wind turbine and wind farm design are covered. These include: The nature of the wind resource, including geographical variation, synoptic and diurnal variations, and turbulence characteristics The aerodynamics of horizontal axis wind turbines, including the actuator disc concept, rotor disc theory, the vortex cylinder model of the actuator disc and the Blade-Element/Momentum theory Design loads for horizontal axis wind turbines, including the prescriptions of international standards Alternative machine architectures The design of key components Wind turbine controller design for fixed and variable speed machines The integration of wind farms into the electrical power system Wind farm design, siting constraints, and the assessment of environmental impact Perfect for engineers and scientists learning about wind turbine technology, the Wind Energy Handbook will also earn a place in the libraries of graduate students taking courses on wind turbines and wind energy, as well as industry professionals whose work requires a deep understanding of wind energy technology.

Nutritional Care of the Patient with Gastrointestinal Disease

Nutritional Care of the Patient with Gastrointestinal Disease
Author: Alan L Buchman
Publsiher: CRC Press
Total Pages: 3428
Release: 2015-08-06
Genre: Medical
ISBN: 9781138001237

Download Nutritional Care of the Patient with Gastrointestinal Disease Book in PDF, Epub and Kindle

This evidence-based book serves as a clinical manual as well as a reference guide for the diagnosis and management of common nutritional issues in relation to gastrointestinal disease. Chapters cover nutrition assessment; macro- and micronutrient absorption; malabsorption; food allergies; prebiotics and dietary fiber; probiotics and intestinal microflora; nutrition and GI cancer; nutritional management of reflux; nutrition in IBS and IBD; nutrition in acute and chronic pancreatitis; enteral nutrition; parenteral nutrition; medical and endoscopic therapy of obesity; surgical therapy of obesity; pharmacologic nutrition, and nutritional counseling.

Handbook of Wind Energy Aerodynamics

Handbook of Wind Energy Aerodynamics
Author: Bernhard Stoevesandt,Gerard Schepers,Peter Fuglsang,Yuping Sun
Publsiher: Springer Nature
Total Pages: 1495
Release: 2022-08-04
Genre: Technology & Engineering
ISBN: 9783030313074

Download Handbook of Wind Energy Aerodynamics Book in PDF, Epub and Kindle

This handbook provides both a comprehensive overview and deep insights on the state-of-the-art methods used in wind turbine aerodynamics, as well as their advantages and limits. The focus of this work is specifically on wind turbines, where the aerodynamics are different from that of other fields due to the turbulent wind fields they face and the resultant differences in structural requirements. It gives a complete picture of research in the field, taking into account the different approaches which are applied. This book would be useful to professionals, academics, researchers and students working in the field.

Wind Turbine Aerodynamics and Vorticity Based Methods

Wind Turbine Aerodynamics and Vorticity Based Methods
Author: Emmanuel Branlard
Publsiher: Springer
Total Pages: 632
Release: 2017-04-05
Genre: Technology & Engineering
ISBN: 9783319551647

Download Wind Turbine Aerodynamics and Vorticity Based Methods Book in PDF, Epub and Kindle

The book introduces the fundamentals of fluid-mechanics, momentum theories, vortex theories and vortex methods necessary for the study of rotors aerodynamics and wind-turbines aerodynamics in particular. Rotor theories are presented in a great level of details at the beginning of the book. These theories include: the blade element theory, the Kutta-Joukowski theory, the momentum theory and the blade element momentum method. A part of the book is dedicated to the description and implementation of vortex methods. The remaining of the book focuses on the study of wind turbine aerodynamics using vortex-theory analyses or vortex-methods. Examples of vortex-theory applications are: optimal rotor design, tip-loss corrections, yaw-models and dynamic inflow models. Historical derivations and recent extensions of the models are presented. The cylindrical vortex model is another example of a simple analytical vortex model presented in this book. This model leads to the development of different BEM models and it is also used to provide the analytical velocity field upstream of a turbine or a wind farm under aligned or yawed conditions. Different applications of numerical vortex methods are presented. Numerical methods are used for instance to investigate the influence of a wind turbine on the incoming turbulence. Sheared inflows and aero-elastic simulations are investigated using vortex methods for the first time. Many analytical flows are derived in details: vortex rings, vortex cylinders, Hill's vortex, vortex blobs etc. They are used throughout the book to devise simple rotor models or to validate the implementation of numerical methods. Several Matlab programs are provided to ease some of the most complex implementations.

Advances in Wind Turbine Blade Design and Materials

Advances in Wind Turbine Blade Design and Materials
Author: Povl Brondsted,Rogier P. L Nijssen,Stergios Goutianos
Publsiher: Woodhead Publishing
Total Pages: 516
Release: 2023-01-14
Genre: Technology & Engineering
ISBN: 9780081030080

Download Advances in Wind Turbine Blade Design and Materials Book in PDF, Epub and Kindle

Advances in Wind Turbine Blade Design and Materials, Second Edition, builds on the thorough review of the design and functionality of wind turbine rotor blades and the requirements and challenges for composite materials used in both current and future designs of wind turbine blades. Reviews the design and functionality of wind turbine rotor blades Examines the requirements and challenges for composite materials used in both current and future designs of wind turbine blades Provides an invaluable reference for researchers and innovators in the field of wind

Wind Energy Explained

Wind Energy Explained
Author: James F. Manwell,Emmanuel Branlard,Jon G. McGowan,Bonnie Ram
Publsiher: John Wiley & Sons
Total Pages: 853
Release: 2024-07-01
Genre: Science
ISBN: 9781119367451

Download Wind Energy Explained Book in PDF, Epub and Kindle

WIND ENERGY EXPLAINED Authoritative and bestselling textbook detailing the many aspects of using wind as an energy source Wind Energy Explained provides complete and comprehensive coverage on the topic of wind energy, starting with general concepts like the history of and rationale for wind energy and continuing into specific technological components and applications along with the new recent developments in the field. Divided into 16 chapters, this edition includes up-to-date data, diagrams, and illustrations, boasting an impressive 35% new material including new sections on metocean design conditions, wind turbine design, wind power plants and the electrical system, fixed and floating offshore wind turbines, project development, permitting and environmental risks and benefits, turbine installation, operation and maintenance, and high penetration wind energy systems and power-to-X. Wind Energy Explained also includes information on: Modern wind turbines, covering the design and their many components such as the rotor, drive train, and generator Aerodynamics of wind energy, covering one-dimensional momentum theory, the Betz limit, and ideal horizontal axis wind turbine with wake rotation Environmental external design conditions, such as wind, waves, currents, tides, salinity, floating ice, and many more Commonly used materials and components, such as steel, composites, copper, and concrete, plus machinery elements, such as shafts, couplings, bearings, and gears Modern design methods, including probabilistic design Environmental effects and mitigation strategies for wind project siting and the role of public engagement in the development process This book offers a complete examination of one of the most promising sources of renewable energy and is a great introduction to this cross-disciplinary field for practicing engineers. It may also be used as a textbook resource for university level courses in wind energy, both introductory and advanced.