Integrated Silicon Metal Systems at the Nanoscale

Integrated Silicon Metal Systems at the Nanoscale
Author: Munir H. Nayfeh,Ammar Nayfeh
Publsiher: Elsevier
Total Pages: 566
Release: 2023-04-10
Genre: Technology & Engineering
ISBN: 9780443186738

Download Integrated Silicon Metal Systems at the Nanoscale Book in PDF, Epub and Kindle

Integrated Silicon-Metal Systems at the Nanoscale: Applications in Photonics, Quantum Computing, Networking, and Internet is a comprehensive guide to the interaction, materials and functional integration at the nanoscale of the silicon-metal binary system and a variety of emerging and next-generation advanced device applications, from energy and electronics, to sensing, quantum computing and quantum internet networks. The book guides the readers through advanced techniques and etching processes, combining underlying principles, materials science, design, and operation of metal-Si nanodevices. Each chapter focuses on a specific use of integrated metal-silicon nanostructures, including storage and resistive next-generation nano memory and transistors, photo and molecular sensing, harvest and storage device electrodes, phosphor light converters, and hydrogen fuel cells, as well as future application areas, such as spin transistors, quantum computing, hybrid quantum devices, and quantum engineering, networking, and internet.

Integrated Silicon Metal Systems at the Nanoscale

Integrated Silicon Metal Systems at the Nanoscale
Author: Munir H. Nayfeh,Ammar Nayfeh
Publsiher: Elsevier
Total Pages: 568
Release: 2023-04-12
Genre: Technology & Engineering
ISBN: 9780443186745

Download Integrated Silicon Metal Systems at the Nanoscale Book in PDF, Epub and Kindle

Integrated Silicon-Metal Systems at the Nanoscale: Applications in Photonics, Quantum Computing, Networking, and Internet is a comprehensive guide to the interaction, materials and functional integration at the nanoscale of the silicon-metal binary system and a variety of emerging and next-generation advanced device applications, from energy and electronics, to sensing, quantum computing and quantum internet networks. The book guides the readers through advanced techniques and etching processes, combining underlying principles, materials science, design, and operation of metal-Si nanodevices. Each chapter focuses on a specific use of integrated metal-silicon nanostructures, including storage and resistive next-generation nano memory and transistors, photo and molecular sensing, harvest and storage device electrodes, phosphor light converters, and hydrogen fuel cells, as well as future application areas, such as spin transistors, quantum computing, hybrid quantum devices, and quantum engineering, networking, and internet. Provides detailed coverage of materials, design and operation of metal-Si nanodevices Offers a step-by-step approach, supported by principles, methods, illustrations and equations Explores a range of cutting-edge emerging applications across electronics, sensing and quantum computing

Nanoscale Silicon Devices

Nanoscale Silicon Devices
Author: Shunri Oda,David K. Ferry
Publsiher: CRC Press
Total Pages: 288
Release: 2018-09-03
Genre: Technology & Engineering
ISBN: 9781482228687

Download Nanoscale Silicon Devices Book in PDF, Epub and Kindle

Is Bigger Always Better? Explore the Behavior of Very Small Devices as Described by Quantum Mechanics Smaller is better when it comes to the semiconductor transistor. Nanoscale Silicon Devices examines the growth of semiconductor device miniaturization and related advances in material, device, circuit, and system design, and highlights the use of device scaling within the semiconductor industry. Device scaling, the practice of continuously scaling down the size of metal-oxide-semiconductor field-effect transistors (MOSFETs), has significantly improved the performance of small computers, mobile phones, and similar devices. The practice has resulted in smaller delay time and higher device density in a chip without an increase in power consumption. This book covers recent advancements and considers the future prospects of nanoscale silicon (Si) devices. It provides an introduction to new concepts (including variability in scaled MOSFETs, thermal effects, spintronics-based nonvolatile computing systems, spin-based qubits, magnetoelectric devices, NEMS devices, tunnel FETs, dopant engineering, and single-electron transfer), new materials (such as high-k dielectrics and germanium), and new device structures in three dimensions. It covers the fundamentals of such devices, describes the physics and modeling of these devices, and advocates further device scaling and minimization of energy consumption in future large-scale integrated circuits (VLSI). Additional coverage includes: Physics of nm scaled devices in terms of quantum mechanics Advanced 3D transistors: tri-gate structure and thermal effects Variability in scaled MOSFET Spintronics on Si platform NEMS devices for switching, memory, and sensor applications The concept of ballistic transport The present status of the transistor variability and more An indispensable resource, Nanoscale Silicon Devices serves device engineers and academic researchers (including graduate students) in the fields of electron devices, solid-state physics, and nanotechnology.

Advanced Nanoscale ULSI Interconnects Fundamentals and Applications

Advanced Nanoscale ULSI Interconnects  Fundamentals and Applications
Author: Yosi Shacham-Diamand,Tetsuya Osaka,Madhav Datta,Takayuki Ohba
Publsiher: Springer Science & Business Media
Total Pages: 552
Release: 2009-09-19
Genre: Science
ISBN: 9780387958682

Download Advanced Nanoscale ULSI Interconnects Fundamentals and Applications Book in PDF, Epub and Kindle

In Advanced ULSI interconnects – fundamentals and applications we bring a comprehensive description of copper-based interconnect technology for ultra-lar- scale integration (ULSI) technology for integrated circuit (IC) application. In- grated circuit technology is the base for all modern electronics systems. You can ?nd electronics systems today everywhere: from toys and home appliances to a- planes and space shuttles. Electronics systems form the hardware that together with software are the bases of the modern information society. The rapid growth and vast exploitation of modern electronics system create a strong demand for new and improved electronic circuits as demonstrated by the amazing progress in the ?eld of ULSI technology. This progress is well described by the famous “Moore’s law” which states, in its most general form, that all the metrics that describe integrated circuit performance (e. g. , speed, number of devices, chip area) improve expon- tially as a function of time. For example, the number of components per chip d- bles every 18 months and the critical dimension on a chip has shrunk by 50% every 2 years on average in the last 30 years. This rapid growth in integrated circuits te- nology results in highly complex integrated circuits with an increasing number of interconnects on chips and between the chip and its package. The complexity of the interconnect network on chips involves an increasing number of metal lines per interconnect level, more interconnect levels, and at the same time a reduction in the interconnect line critical dimensions.

Nanoscience and Technology

Nanoscience and Technology
Author: Anonim
Publsiher: Unknown
Total Pages: 135
Release: 2023
Genre: Electronic Book
ISBN: 9789814466868

Download Nanoscience and Technology Book in PDF, Epub and Kindle

Nanoelectronics

Nanoelectronics
Author: Anonim
Publsiher: Elsevier
Total Pages: 476
Release: 2018-10-05
Genre: Science
ISBN: 9780128133545

Download Nanoelectronics Book in PDF, Epub and Kindle

Nanoelectronics: Devices, Circuits and Systems explores current and emerging trends in the field of nanoelectronics, from both a devices-to-circuits and circuits-to-systems perspective. It covers a wide spectrum and detailed discussion on the field of nanoelectronic devices, circuits and systems. This book presents an in-depth analysis and description of electron transport phenomenon at nanoscale dimensions. Both qualitative and analytical approaches are taken to explore the devices, circuit functionalities and their system applications at deep submicron and nanoscale levels. Recent devices, including FinFET, Tunnel FET, and emerging materials, including graphene, and its applications are discussed. In addition, a chapter on advanced VLSI interconnects gives clear insight to the importance of these nano-transmission lines in determining the overall IC performance. The importance of integration of optics with electronics is elucidated in the optoelectronics and photonic integrated circuit sections of this book. This book provides valuable resource materials for scientists and electrical engineers who want to learn more about nanoscale electronic materials and how they are used. Shows how electronic transport works at the nanoscale level Demonstrates how nanotechnology can help engineers create more effective circuits and systems Assesses the most commonly used nanoelectronic devices, explaining which is best for different situations

Comprehensive Nanoscience and Nanotechnology

Comprehensive Nanoscience and Nanotechnology
Author: Anonim
Publsiher: Academic Press
Total Pages: 1881
Release: 2019-01-02
Genre: Technology & Engineering
ISBN: 9780128122969

Download Comprehensive Nanoscience and Nanotechnology Book in PDF, Epub and Kindle

Comprehensive Nanoscience and Technology, Second Edition, Five Volume Set allows researchers to navigate a very diverse, interdisciplinary and rapidly-changing field with up-to-date, comprehensive and authoritative coverage of every aspect of modern nanoscience and nanotechnology. Presents new chapters on the latest developments in the field Covers topics not discussed to this degree of detail in other works, such as biological devices and applications of nanotechnology Compiled and written by top international authorities in the field

Comprehensive Nanoscience and Technology

Comprehensive Nanoscience and Technology
Author: Anonim
Publsiher: Academic Press
Total Pages: 2785
Release: 2010-10-29
Genre: Science
ISBN: 9780123743961

Download Comprehensive Nanoscience and Technology Book in PDF, Epub and Kindle

From the Introduction:Nanotechnology and its underpinning sciences are progressing with unprecedented rapidity. With technical advances in a variety of nanoscale fabrication and manipulation technologies, the whole topical area is maturing into a vibrant field that is generating new scientific research and a burgeoning range of commercial applications, with an annual market already at the trillion dollar threshold. The means of fabricating and controlling matter on the nanoscale afford striking and unprecedented opportunities to exploit a variety of exotic phenomena such as quantum, nanophotonic and nanoelectromechanical effects. Moreover, researchers are elucidating new perspectives on the electronic and optical properties of matter because of the way that nanoscale materials bridge the disparate theories describing molecules and bulk matter. Surface phenomena also gain a greatly increased significance; even the well-known link between chemical reactivity and surface-to-volume ratio becomes a major determinant of physical properties, when it operates over nanoscale dimensions. Against this background, this comprehensive work is designed to address the need for a dynamic, authoritative and readily accessible source of information, capturing the full breadth of the subject. Its six volumes, covering a broad spectrum of disciplines including material sciences, chemistry, physics and life sciences, have been written and edited by an outstanding team of international experts. Addressing an extensive, cross-disciplinary audience, each chapter aims to cover key developments in a scholarly, readable and critical style, providing an indispensible first point of entry to the literature for scientists and technologists from interdisciplinary fields. The work focuses on the major classes of nanomaterials in terms of their synthesis, structure and applications, reviewing nanomaterials and their respective technologies in well-structured and comprehensive articles with extensive cross-references. It has been a constant surprise and delight to have found, amongst the rapidly escalating number who work in nanoscience and technology, so many highly esteemed authors willing to contribute. Sharing our anticipation of a major addition to the literature, they have also captured the excitement of the field itself in each carefully crafted chapter. Along with our painstaking and meticulous volume editors, full credit for the success of this enterprise must go to these individuals, together with our thanks for (largely) adhering to the given deadlines. Lastly, we record our sincere thanks and appreciation for the skills and professionalism of the numerous Elsevier staff who have been involved in this project, notably Fiona Geraghty, Megan Palmer and Greg Harris, and especially Donna De Weerd-Wilson who has steered it through from its inception. We have greatly enjoyed working with them all, as we have with each other.