Introduction to Topological Quantum Matter Quantum Computation

Introduction to Topological Quantum Matter   Quantum Computation
Author: Tudor D. Stanescu
Publsiher: CRC Press
Total Pages: 395
Release: 2016-12-19
Genre: Science
ISBN: 9781482245943

Download Introduction to Topological Quantum Matter Quantum Computation Book in PDF, Epub and Kindle

What is "topological" about topological quantum states? How many types of topological quantum phases are there? What is a zero-energy Majorana mode, how can it be realized in a solid state system, and how can it be used as a platform for topological quantum computation? What is quantum computation and what makes it different from classical computation? Addressing these and other related questions, Introduction to Topological Quantum Matter & Quantum Computation provides an introduction to and a synthesis of a fascinating and rapidly expanding research field emerging at the crossroads of condensed matter physics, mathematics, and computer science. Providing the big picture, this book is ideal for graduate students and researchers entering this field as it allows for the fruitful transfer of paradigms and ideas amongst different areas, and includes many specific examples to help the reader understand abstract and sometimes challenging concepts. It explores the topological quantum world beyond the well-known topological insulators and superconductors and emphasizes the deep connections with quantum computation. It addresses key principles behind the classification of topological quantum phases and relevant mathematical concepts and discusses models of interacting and noninteracting topological systems, such as the torric code and the p-wave superconductor. The book also covers the basic properties of anyons, and aspects concerning the realization of topological states in solid state structures and cold atom systems. Quantum computation is also presented using a broad perspective, which includes fundamental aspects of quantum mechanics, such as Bell's theorem, basic concepts in the theory of computation, such as computational models and computational complexity, examples of quantum algorithms, and elements of classical and quantum information theory.

Introduction to Topological Quantum Matter Quantum Computation

Introduction to Topological Quantum Matter   Quantum Computation
Author: Tudor D. Stanescu
Publsiher: CRC Press
Total Pages: 489
Release: 2024-07-02
Genre: Science
ISBN: 9781040041987

Download Introduction to Topological Quantum Matter Quantum Computation Book in PDF, Epub and Kindle

What is "topological" about topological quantum states? How many types of topological quantum phases are there? What is a zero-energy Majorana mode, how can it be realized in a solid-state system, and how can it be used as a platform for topological quantum computation? What is quantum computation and what makes it different from classical computation? Addressing these and other related questions, Introduction to Topological Quantum Matter & Quantum Computation provides an introduction to and a synthesis of a fascinating and rapidly expanding research field emerging at the crossroads of condensed matter physics, mathematics, and computer science. Providing the big picture and emphasizing two major new paradigms in condensed matter physics – quantum topology and quantum information – this book is ideal for graduate students and researchers entering this field, as it allows for the fruitful transfer of ideas amongst different areas, and includes many specific examples to help the reader understand abstract and sometimes challenging concepts. It explores the topological quantum world beyond the well-known topological insulators and superconductors and unveils the deep connections with quantum computation. It addresses key principles behind the classification of topological quantum phases and relevant mathematical concepts and discusses models of interacting and noninteracting topological systems, such as the toric code and the p-wave superconductor. The book also covers the basic properties of anyons, and aspects concerning the realization of topological states in solid state structures and cold atom systems. Topological quantum computation is also presented using a broad perspective, which includes elements of classical and quantum information theory, basic concepts in the theory of computation, such as computational models and computational complexity, examples of quantum algorithms, and key ideas underlying quantum computation with anyons. This new edition has been updated throughout, with exciting new discussions on crystalline topological phases, including higher-order topological insulators; gapless topological phases, including Weyl semimetals; periodically-driven topological insulators; and a discussion of axion electrodynamics in topological materials. Key Features: · Provides an accessible introduction to this exciting, cross-disciplinary area of research. · Fully updated throughout with new content on the latest result from the field. · Authored by an authority on the subject. Tudor Stanescu is a professor of Condensed Matter Theory at West Virginia University, USA. He received a B.S. in Physics from the University of Bucharest, Romania, in 1994 and a Ph.D. in Theoretical Physics from the University of Illinois at Urbana Champaign in 2002. He was a Postdoctoral Fellow at Rutgers University and at the University of Maryland from 2003 to 2009. He joined the Department of Physics and Astronomy at West Virginia University in Fall 2009. Prof. Stanescu’s research interests encompass a variety of topics in theoretical condensed matter physics including topological insulators and superconductors, topological quantum computation, ultra-cold atom systems in optical lattices, and strongly correlated materials, such as, for example, cuprate high-temperature superconductors. His research uses a combination of analytical and numerical tools and focuses on understanding the emergence of exotic states of matter in solid state and cold atom structures, for example, topological superconducting phases that host Majorana zero modes, and on investigating the possibilities of exploiting these states as physical platforms for quantum computation.

Introduction to Topological Quantum Matter Quantum Computation

Introduction to Topological Quantum Matter   Quantum Computation
Author: Tudor D. Stanescu
Publsiher: Unknown
Total Pages: 135
Release: 2017
Genre: Quantum computing
ISBN: 1351722530

Download Introduction to Topological Quantum Matter Quantum Computation Book in PDF, Epub and Kindle

Introduction to Topological Quantum Computation

Introduction to Topological Quantum Computation
Author: Jiannis K. Pachos
Publsiher: Cambridge University Press
Total Pages: 220
Release: 2012-04-12
Genre: Computers
ISBN: 9781107005044

Download Introduction to Topological Quantum Computation Book in PDF, Epub and Kindle

Ideal for graduate students and researchers from various sub-disciplines, this book provides an excellent introduction to topological quantum computation.

Quantum Information Meets Quantum Matter

Quantum Information Meets Quantum Matter
Author: Bei Zeng,Xie Chen,Duan-Lu Zhou,Xiao-Gang Wen
Publsiher: Springer
Total Pages: 364
Release: 2019-03-28
Genre: Computers
ISBN: 9781493990849

Download Quantum Information Meets Quantum Matter Book in PDF, Epub and Kindle

This book approaches condensed matter physics from the perspective of quantum information science, focusing on systems with strong interaction and unconventional order for which the usual condensed matter methods like the Landau paradigm or the free fermion framework break down. Concepts and tools in quantum information science such as entanglement, quantum circuits, and the tensor network representation prove to be highly useful in studying such systems. The goal of this book is to introduce these techniques and show how they lead to a new systematic way of characterizing and classifying quantum phases in condensed matter systems. The first part of the book introduces some basic concepts in quantum information theory which are then used to study the central topic explained in Part II: local Hamiltonians and their ground states. Part III focuses on one of the major new phenomena in strongly interacting systems, the topological order, and shows how it can essentially be defined and characterized in terms of entanglement. Part IV shows that the key entanglement structure of topological states can be captured using the tensor network representation, which provides a powerful tool in the classification of quantum phases. Finally, Part V discusses the exciting prospect at the intersection of quantum information and condensed matter physics – the unification of information and matter. Intended for graduate students and researchers in condensed matter physics, quantum information science and related fields, the book is self-contained and no prior knowledge of these topics is assumed.

Introduction to Quantum Computation

Introduction to Quantum Computation
Author: Ioan Burda
Publsiher: Universal-Publishers
Total Pages: 168
Release: 2005
Genre: Computers
ISBN: 9781581124668

Download Introduction to Quantum Computation Book in PDF, Epub and Kindle

"Introduction to Quantum Computation" is an introduction to a new rapidly developing theory of quantum computing. The book is a comprehensive introduction to the main ideas and techniques of quantum computation. It begins with the basics of classical theory of computation: NP-complete problems, Boolean circuits, Finite state machine, Turing machine and the idea of complexity of an algorithm. The general quantum formalism (pure states, qubit, superposition, evolution of quantum system, entanglement, multi-qubit system ...) and complex algorithm examples are also presented. Matlab is a well known in engineer academia as matrix computing environment, which makes it well suited for simulating quantum algorithms. The (Quantum Computer Toolbox) QCT is written entirely in the Matlab and m-files are listed in book's sections. There are certain data types that are implicitly defined by the QCT, including data types for qubit registers and transformations. The QCT contains many functions designed to mimic the actions of a quantum computer. In addition, the QCT contains several convenience functions designed to aid in the creation and modification of the data types used in algorithms. The main purposes of the QCT are for research involving Quantum Computation and as a teaching tool to aid in learning about Quantum Computing systems. The readers will learn to implement complex quantum algorithm (quantum teleportation and Deutsch, Grover, Shor algorithm) under Matlab environment (complete Matlab code examples).

Topological Phases of Matter

Topological Phases of Matter
Author: Roderich Moessner,Joel E. Moore
Publsiher: Cambridge University Press
Total Pages: 393
Release: 2021-04-29
Genre: Mathematics
ISBN: 9781107105539

Download Topological Phases of Matter Book in PDF, Epub and Kindle

This important graduate level text unites the physical mechanisms behind the phenomena of topological matter within a theoretical framework.

Topological Quantum

Topological Quantum
Author: Steven H. Simon
Publsiher: Oxford University Press
Total Pages: 641
Release: 2023-09-29
Genre: Electronic Book
ISBN: 9780198886723

Download Topological Quantum Book in PDF, Epub and Kindle

At the intersection of physics, mathematics, and computer science, an exciting new field of study has formed, known as "Topological Quantum." This research field examines the deep connections between the theory of knots, special types of subatomic particles known as anyons, certain phases of matter, and quantum computation. This book elucidates this nexus, drawing in topics ranging from quantum gravity to topology to experimental condensed matter physics. Topological quantum has increasingly been a focus point in the fields of condensed matter physics and quantum information over the last few decades, and the forefront of research now builds on the basic ideas presented in this book. The material is presented in a down-to-earth and entertaining way that is far less abstract than most of what is in the literature. While introducing the crucial concepts and placing them in context, the subject is presented without resort to the highly mathematical category theory that underlies the field. Requiring only an elementary background in quantum mechanics, this book is appropriate for all readers, from advanced undergraduates to the professional practitioner. This book will be of interest to mathematicians and computer scientists as well as physicists working on a wide range of topics. Those interested in working in these field will find this book to be an invaluable introduction as well as a crucial reference.