Mathematical Methods in Biology and Neurobiology

Mathematical Methods in Biology and Neurobiology
Author: Jurgen Jost
Publsiher: Unknown
Total Pages: 238
Release: 2014-03-31
Genre: Electronic Book
ISBN: 1447163540

Download Mathematical Methods in Biology and Neurobiology Book in PDF, Epub and Kindle

Mathematical Methods in Biology and Neurobiology

Mathematical Methods in Biology and Neurobiology
Author: Jürgen Jost
Publsiher: Springer Science & Business Media
Total Pages: 226
Release: 2014-02-13
Genre: Mathematics
ISBN: 9781447163534

Download Mathematical Methods in Biology and Neurobiology Book in PDF, Epub and Kindle

Mathematical models can be used to meet many of the challenges and opportunities offered by modern biology. The description of biological phenomena requires a range of mathematical theories. This is the case particularly for the emerging field of systems biology. Mathematical Methods in Biology and Neurobiology introduces and develops these mathematical structures and methods in a systematic manner. It studies: • discrete structures and graph theory • stochastic processes • dynamical systems and partial differential equations • optimization and the calculus of variations. The biological applications range from molecular to evolutionary and ecological levels, for example: • cellular reaction kinetics and gene regulation • biological pattern formation and chemotaxis • the biophysics and dynamics of neurons • the coding of information in neuronal systems • phylogenetic tree reconstruction • branching processes and population genetics • optimal resource allocation • sexual recombination • the interaction of species. Written by one of the most experienced and successful authors of advanced mathematical textbooks, this book stands apart for the wide range of mathematical tools that are featured. It will be useful for graduate students and researchers in mathematics and physics that want a comprehensive overview and a working knowledge of the mathematical tools that can be applied in biology. It will also be useful for biologists with some mathematical background that want to learn more about the mathematical methods available to deal with biological structures and data.

Mathematical Modeling and Simulation in Enteric Neurobiology

Mathematical Modeling and Simulation in Enteric Neurobiology
Author: Anonim
Publsiher: Unknown
Total Pages: 135
Release: 2024
Genre: Electronic Book
ISBN: 9789814469876

Download Mathematical Modeling and Simulation in Enteric Neurobiology Book in PDF, Epub and Kindle

Mathematical Modeling and Simulation in Enteric Neurobiology

Mathematical Modeling and Simulation in Enteric Neurobiology
Author: Roustem Miftahof
Publsiher: World Scientific
Total Pages: 350
Release: 2009
Genre: Medical
ISBN: 9789812834812

Download Mathematical Modeling and Simulation in Enteric Neurobiology Book in PDF, Epub and Kindle

The lack of scientists equally trained and prepared to understand both mathematics and biology/medicine hampers the development and application of computer simulation methods in biology and neurogastrobiology. Currently, there are no texts for navigating the extensive and intricate field of mathematical and computational modeling in neurogastrobiology. This book bridges the gap between mathematicians, computer scientists and biologists, and thus assists in the study and analysis of complex biological phenomena that cannot be done through traditional in vivo and in vitro experimental approaches. The book recognizes the complexity of biological phenomena under investigation and treats the subject matter with a degree of mathematical rigor. Special attention is given to computer simulations for interpolation and extrapolation of electromechanical and chemoelectrical phenomena, nonlinear self-sustained electromechanical wave activity, pharmacological effects including co-localization and co-transmission by multiple neurotransmitters, receptor polymodality, and drug interactions. Mathematical Modeling and Simulation in Enteric Neurobiology is an interdisciplinary book and is an essential source of information for biologists and doctors who are interested in knowing about the role and advantages of numerical experimentation in their subjects, as well as for mathematicians who are interested in exploring new areas of applications.

Mathematical Methods in Biology

Mathematical Methods in Biology
Author: J. David Logan,William Wolesensky
Publsiher: John Wiley & Sons
Total Pages: 437
Release: 2009-08-17
Genre: Science
ISBN: 9780470525876

Download Mathematical Methods in Biology Book in PDF, Epub and Kindle

A one-of-a-kind guide to using deterministic and probabilistic methods for solving problems in the biological sciences Highlighting the growing relevance of quantitative techniques in scientific research, Mathematical Methods in Biology provides an accessible presentation of the broad range of important mathematical methods for solving problems in the biological sciences. The book reveals the growing connections between mathematics and biology through clear explanations and specific, interesting problems from areas such as population dynamics, foraging theory, and life history theory. The authors begin with an introduction and review of mathematical tools that are employed in subsequent chapters, including biological modeling, calculus, differential equations, dimensionless variables, and descriptive statistics. The following chapters examine standard discrete and continuous models using matrix algebra as well as difference and differential equations. Finally, the book outlines probability, statistics, and stochastic methods as well as material on bootstrapping and stochastic differential equations, which is a unique approach that is not offered in other literature on the topic. In order to demonstrate the application of mathematical methods to the biological sciences, the authors provide focused examples from the field of theoretical ecology, which serve as an accessible context for study while also demonstrating mathematical skills that are applicable to many other areas in the life sciences. The book's algorithms are illustrated using MATLAB®, but can also be replicated using other software packages, including R, Mathematica®, and Maple; however, the text does not require any single computer algebra package. Each chapter contains numerous exercises and problems that range in difficulty, from the basic to more challenging, to assist readers with building their problem-solving skills. Selected solutions are included at the back of the book, and a related Web site features supplemental material for further study. Extensively class-tested to ensure an easy-to-follow format, Mathematical Methods in Biology is an excellent book for mathematics and biology courses at the upper-undergraduate and graduate levels. It also serves as a valuable reference for researchers and professionals working in the fields of biology, ecology, and biomathematics.

Mathematical Foundations of Neuroscience

Mathematical Foundations of Neuroscience
Author: G. Bard Ermentrout,David H. Terman
Publsiher: Springer Science & Business Media
Total Pages: 434
Release: 2010-07-08
Genre: Mathematics
ISBN: 9780387877075

Download Mathematical Foundations of Neuroscience Book in PDF, Epub and Kindle

Arising from several courses taught by the authors, this book provides a needed overview illustrating how dynamical systems and computational analysis have been used in understanding the types of models that come out of neuroscience.

Mathematics for Neuroscientists

Mathematics for Neuroscientists
Author: Fabrizio Gabbiani,Steven James Cox
Publsiher: Academic Press
Total Pages: 505
Release: 2010-09-16
Genre: Medical
ISBN: 9780080890494

Download Mathematics for Neuroscientists Book in PDF, Epub and Kindle

Virtually all scientific problems in neuroscience require mathematical analysis, and all neuroscientists are increasingly required to have a significant understanding of mathematical methods. There is currently no comprehensive, integrated introductory book on the use of mathematics in neuroscience; existing books either concentrate solely on theoretical modeling or discuss mathematical concepts for the treatment of very specific problems. This book fills this need by systematically introducing mathematical and computational tools in precisely the contexts that first established their importance for neuroscience. All mathematical concepts will be introduced from the simple to complex using the most widely used computing environment, Matlab. This book will provide a grounded introduction to the fundamental concepts of mathematics, neuroscience and their combined use, thus providing the reader with a springboard to cutting-edge research topics and fostering a tighter integration of mathematics and neuroscience for future generations of students. A very didactic and systematic introduction to mathematical concepts of importance for the analysis of data and the formulation of concepts based on experimental data in neuroscience Provides introductions to linear algebra, ordinary and partial differential equations, Fourier transforms, probabilities and stochastic processes Introduces numerical methods used to implement algorithms related to each mathematical concept Illustrates numerical methods by applying them to specific topics in neuroscience, including Hodgkin-Huxley equations, probabilities to describe stochastic release, stochastic processes to describe noise in neurons, Fourier transforms to describe the receptive fields of visual neurons Allows the mathematical novice to analyze their results in more sophisticated ways, and consider them in a broader theoretical framework

Some Mathematical Questions in Biology Neurobiology

Some Mathematical Questions in Biology  Neurobiology
Author: Robert M. Miura
Publsiher: American Mathematical Soc.
Total Pages: 136
Release: 1982-12-31
Genre: Science
ISBN: 0821897098

Download Some Mathematical Questions in Biology Neurobiology Book in PDF, Epub and Kindle

This volume contains lectures presented at the 15th annual meeting on mathematical biology, organized by a joint AMS-SIAM committee, as part of the mathematical activities at the annual AAAS meeting, held January 7, 1982, in Washington, D.C. The meeting was devoted to neurobiology, and was very ably organized by Robert M. Miura. Neurobiology is a very large field, and there are many applications of mathematics that could have been selected. Miura and the committee wisely chose to concentrate on one or two topics concerned mainly with the properties of individual neurons and their processes. In summary, this is an excellent collection of articles on some of the more interesting and timely problems of cellular neurobiology. The articles, especially those by Plant, Rinzel, and Nicholson and Phillips, are all excellent expositions of important problems. I recommend this volume to anyone interested in mathematical neurobiology.