Mathematics for Neuroscientists

Mathematics for Neuroscientists
Author: Fabrizio Gabbiani,Steven James Cox
Publsiher: Academic Press
Total Pages: 628
Release: 2017-03-21
Genre: Science
ISBN: 9780128019061

Download Mathematics for Neuroscientists Book in PDF, Epub and Kindle

Mathematics for Neuroscientists, Second Edition, presents a comprehensive introduction to mathematical and computational methods used in neuroscience to describe and model neural components of the brain from ion channels to single neurons, neural networks and their relation to behavior. The book contains more than 200 figures generated using Matlab code available to the student and scholar. Mathematical concepts are introduced hand in hand with neuroscience, emphasizing the connection between experimental results and theory. Fully revised material and corrected text Additional chapters on extracellular potentials, motion detection and neurovascular coupling Revised selection of exercises with solutions More than 200 Matlab scripts reproducing the figures as well as a selection of equivalent Python scripts

Mathematics for Neuroscientists

Mathematics for Neuroscientists
Author: Fabrizio Gabbiani,Steven James Cox
Publsiher: Academic Press
Total Pages: 505
Release: 2010-09-16
Genre: Medical
ISBN: 9780080890494

Download Mathematics for Neuroscientists Book in PDF, Epub and Kindle

Virtually all scientific problems in neuroscience require mathematical analysis, and all neuroscientists are increasingly required to have a significant understanding of mathematical methods. There is currently no comprehensive, integrated introductory book on the use of mathematics in neuroscience; existing books either concentrate solely on theoretical modeling or discuss mathematical concepts for the treatment of very specific problems. This book fills this need by systematically introducing mathematical and computational tools in precisely the contexts that first established their importance for neuroscience. All mathematical concepts will be introduced from the simple to complex using the most widely used computing environment, Matlab. This book will provide a grounded introduction to the fundamental concepts of mathematics, neuroscience and their combined use, thus providing the reader with a springboard to cutting-edge research topics and fostering a tighter integration of mathematics and neuroscience for future generations of students. A very didactic and systematic introduction to mathematical concepts of importance for the analysis of data and the formulation of concepts based on experimental data in neuroscience Provides introductions to linear algebra, ordinary and partial differential equations, Fourier transforms, probabilities and stochastic processes Introduces numerical methods used to implement algorithms related to each mathematical concept Illustrates numerical methods by applying them to specific topics in neuroscience, including Hodgkin-Huxley equations, probabilities to describe stochastic release, stochastic processes to describe noise in neurons, Fourier transforms to describe the receptive fields of visual neurons Allows the mathematical novice to analyze their results in more sophisticated ways, and consider them in a broader theoretical framework

Mathematical Foundations of Neuroscience

Mathematical Foundations of Neuroscience
Author: G. Bard Ermentrout,David H. Terman
Publsiher: Springer Science & Business Media
Total Pages: 434
Release: 2010-07-01
Genre: Mathematics
ISBN: 9780387877082

Download Mathematical Foundations of Neuroscience Book in PDF, Epub and Kindle

This book applies methods from nonlinear dynamics to problems in neuroscience. It uses modern mathematical approaches to understand patterns of neuronal activity seen in experiments and models of neuronal behavior. The intended audience is researchers interested in applying mathematics to important problems in neuroscience, and neuroscientists who would like to understand how to create models, as well as the mathematical and computational methods for analyzing them. The authors take a very broad approach and use many different methods to solve and understand complex models of neurons and circuits. They explain and combine numerical, analytical, dynamical systems and perturbation methods to produce a modern approach to the types of model equations that arise in neuroscience. There are extensive chapters on the role of noise, multiple time scales and spatial interactions in generating complex activity patterns found in experiments. The early chapters require little more than basic calculus and some elementary differential equations and can form the core of a computational neuroscience course. Later chapters can be used as a basis for a graduate class and as a source for current research in mathematical neuroscience. The book contains a large number of illustrations, chapter summaries and hundreds of exercises which are motivated by issues that arise in biology, and involve both computation and analysis. Bard Ermentrout is Professor of Computational Biology and Professor of Mathematics at the University of Pittsburgh. David Terman is Professor of Mathematics at the Ohio State University.

Signal Processing for Neuroscientists

Signal Processing for Neuroscientists
Author: Wim van Drongelen
Publsiher: Elsevier
Total Pages: 320
Release: 2006-12-18
Genre: Science
ISBN: 008046775X

Download Signal Processing for Neuroscientists Book in PDF, Epub and Kindle

Signal Processing for Neuroscientists introduces analysis techniques primarily aimed at neuroscientists and biomedical engineering students with a reasonable but modest background in mathematics, physics, and computer programming. The focus of this text is on what can be considered the ‘golden trio’ in the signal processing field: averaging, Fourier analysis, and filtering. Techniques such as convolution, correlation, coherence, and wavelet analysis are considered in the context of time and frequency domain analysis. The whole spectrum of signal analysis is covered, ranging from data acquisition to data processing; and from the mathematical background of the analysis to the practical application of processing algorithms. Overall, the approach to the mathematics is informal with a focus on basic understanding of the methods and their interrelationships rather than detailed proofs or derivations. One of the principle goals is to provide the reader with the background required to understand the principles of commercially available analyses software, and to allow him/her to construct his/her own analysis tools in an environment such as MATLAB®. Multiple color illustrations are integrated in the text Includes an introduction to biomedical signals, noise characteristics, and recording techniques Basics and background for more advanced topics can be found in extensive notes and appendices A Companion Website hosts the MATLAB scripts and several data files: http://www.elsevierdirect.com/companion.jsp?ISBN=9780123708670

Dynamical Systems in Neuroscience

Dynamical Systems in Neuroscience
Author: Eugene M. Izhikevich
Publsiher: MIT Press
Total Pages: 459
Release: 2010-01-22
Genre: Medical
ISBN: 9780262514200

Download Dynamical Systems in Neuroscience Book in PDF, Epub and Kindle

Explains the relationship of electrophysiology, nonlinear dynamics, and the computational properties of neurons, with each concept presented in terms of both neuroscience and mathematics and illustrated using geometrical intuition. In order to model neuronal behavior or to interpret the results of modeling studies, neuroscientists must call upon methods of nonlinear dynamics. This book offers an introduction to nonlinear dynamical systems theory for researchers and graduate students in neuroscience. It also provides an overview of neuroscience for mathematicians who want to learn the basic facts of electrophysiology. Dynamical Systems in Neuroscience presents a systematic study of the relationship of electrophysiology, nonlinear dynamics, and computational properties of neurons. It emphasizes that information processing in the brain depends not only on the electrophysiological properties of neurons but also on their dynamical properties. The book introduces dynamical systems, starting with one- and two-dimensional Hodgkin-Huxley-type models and continuing to a description of bursting systems. Each chapter proceeds from the simple to the complex, and provides sample problems at the end. The book explains all necessary mathematical concepts using geometrical intuition; it includes many figures and few equations, making it especially suitable for non-mathematicians. Each concept is presented in terms of both neuroscience and mathematics, providing a link between the two disciplines. Nonlinear dynamical systems theory is at the core of computational neuroscience research, but it is not a standard part of the graduate neuroscience curriculum—or taught by math or physics department in a way that is suitable for students of biology. This book offers neuroscience students and researchers a comprehensive account of concepts and methods increasingly used in computational neuroscience. An additional chapter on synchronization, with more advanced material, can be found at the author's website, www.izhikevich.com.

MATLAB for Neuroscientists

MATLAB for Neuroscientists
Author: Pascal Wallisch,Michael E. Lusignan,Marc D. Benayoun,Tanya I. Baker,Adam Seth Dickey,Nicholas G. Hatsopoulos
Publsiher: Academic Press
Total Pages: 571
Release: 2014-01-09
Genre: Psychology
ISBN: 9780123838377

Download MATLAB for Neuroscientists Book in PDF, Epub and Kindle

MATLAB for Neuroscientists serves as the only complete study manual and teaching resource for MATLAB, the globally accepted standard for scientific computing, in the neurosciences and psychology. This unique introduction can be used to learn the entire empirical and experimental process (including stimulus generation, experimental control, data collection, data analysis, modeling, and more), and the 2nd Edition continues to ensure that a wide variety of computational problems can be addressed in a single programming environment. This updated edition features additional material on the creation of visual stimuli, advanced psychophysics, analysis of LFP data, choice probabilities, synchrony, and advanced spectral analysis. Users at a variety of levels—advanced undergraduates, beginning graduate students, and researchers looking to modernize their skills—will learn to design and implement their own analytical tools, and gain the fluency required to meet the computational needs of neuroscience practitioners. The first complete volume on MATLAB focusing on neuroscience and psychology applications Problem-based approach with many examples from neuroscience and cognitive psychology using real data Illustrated in full color throughout Careful tutorial approach, by authors who are award-winning educators with strong teaching experience

Mathematical and Theoretical Neuroscience

Mathematical and Theoretical Neuroscience
Author: Giovanni Naldi,Thierry Nieus
Publsiher: Springer
Total Pages: 253
Release: 2018-03-20
Genre: Mathematics
ISBN: 9783319682976

Download Mathematical and Theoretical Neuroscience Book in PDF, Epub and Kindle

This volume gathers contributions from theoretical, experimental and computational researchers who are working on various topics in theoretical/computational/mathematical neuroscience. The focus is on mathematical modeling, analytical and numerical topics, and statistical analysis in neuroscience with applications. The following subjects are considered: mathematical modelling in Neuroscience, analytical and numerical topics; statistical analysis in Neuroscience; Neural Networks; Theoretical Neuroscience. The book is addressed to researchers involved in mathematical models applied to neuroscience.

Computational Neuroscience

Computational Neuroscience
Author: Hanspeter A Mallot
Publsiher: Springer Science & Business Media
Total Pages: 135
Release: 2013-05-23
Genre: Technology & Engineering
ISBN: 9783319008615

Download Computational Neuroscience Book in PDF, Epub and Kindle

Computational Neuroscience - A First Course provides an essential introduction to computational neuroscience and equips readers with a fundamental understanding of modeling the nervous system at the membrane, cellular, and network level. The book, which grew out of a lecture series held regularly for more than ten years to graduate students in neuroscience with backgrounds in biology, psychology and medicine, takes its readers on a journey through three fundamental domains of computational neuroscience: membrane biophysics, systems theory and artificial neural networks. The required mathematical concepts are kept as intuitive and simple as possible throughout the book, making it fully accessible to readers who are less familiar with mathematics. Overall, Computational Neuroscience - A First Course represents an essential reference guide for all neuroscientists who use computational methods in their daily work, as well as for any theoretical scientist approaching the field of computational neuroscience.