Mathematical Tools for the Study of the Incompressible Navier Stokes Equations andRelated Models

Mathematical Tools for the Study of the Incompressible Navier Stokes Equations andRelated Models
Author: Franck Boyer,Pierre Fabrie
Publsiher: Springer Science & Business Media
Total Pages: 538
Release: 2012-11-06
Genre: Mathematics
ISBN: 9781461459750

Download Mathematical Tools for the Study of the Incompressible Navier Stokes Equations andRelated Models Book in PDF, Epub and Kindle

The objective of this self-contained book is two-fold. First, the reader is introduced to the modelling and mathematical analysis used in fluid mechanics, especially concerning the Navier-Stokes equations which is the basic model for the flow of incompressible viscous fluids. Authors introduce mathematical tools so that the reader is able to use them for studying many other kinds of partial differential equations, in particular nonlinear evolution problems. The background needed are basic results in calculus, integration, and functional analysis. Some sections certainly contain more advanced topics than others. Nevertheless, the authors’ aim is that graduate or PhD students, as well as researchers who are not specialized in nonlinear analysis or in mathematical fluid mechanics, can find a detailed introduction to this subject. .

Mathematical Tools for the Study of the Incompressible Navier Stokes Equations and Related Models

Mathematical Tools for the Study of the Incompressible Navier Stokes Equations and Related Models
Author: Franck Boyer,Pierre Fabrie
Publsiher: Springer
Total Pages: 526
Release: 2012-11-06
Genre: Mathematics
ISBN: 1461459761

Download Mathematical Tools for the Study of the Incompressible Navier Stokes Equations and Related Models Book in PDF, Epub and Kindle

The objective of this self-contained book is two-fold. First, the reader is introduced to the modelling and mathematical analysis used in fluid mechanics, especially concerning the Navier-Stokes equations which is the basic model for the flow of incompressible viscous fluids. Authors introduce mathematical tools so that the reader is able to use them for studying many other kinds of partial differential equations, in particular nonlinear evolution problems. The background needed are basic results in calculus, integration, and functional analysis. Some sections certainly contain more advanced topics than others. Nevertheless, the authors’ aim is that graduate or PhD students, as well as researchers who are not specialized in nonlinear analysis or in mathematical fluid mechanics, can find a detailed introduction to this subject. .

Mathematical and Numerical Foundations of Turbulence Models and Applications

Mathematical and Numerical Foundations of Turbulence Models and Applications
Author: Tomás Chacón Rebollo,Roger Lewandowski
Publsiher: Springer
Total Pages: 530
Release: 2014-06-17
Genre: Mathematics
ISBN: 9781493904556

Download Mathematical and Numerical Foundations of Turbulence Models and Applications Book in PDF, Epub and Kindle

With applications to climate, technology, and industry, the modeling and numerical simulation of turbulent flows are rich with history and modern relevance. The complexity of the problems that arise in the study of turbulence requires tools from various scientific disciplines, including mathematics, physics, engineering and computer science. Authored by two experts in the area with a long history of collaboration, this monograph provides a current, detailed look at several turbulence models from both the theoretical and numerical perspectives. The k-epsilon, large-eddy simulation and other models are rigorously derived and their performance is analyzed using benchmark simulations for real-world turbulent flows. Mathematical and Numerical Foundations of Turbulence Models and Applications is an ideal reference for students in applied mathematics and engineering, as well as researchers in mathematical and numerical fluid dynamics. It is also a valuable resource for advanced graduate students in fluid dynamics, engineers, physical oceanographers, meteorologists and climatologists.

An Introduction to the Mathematical Theory of the Navier Stokes Equations

An Introduction to the Mathematical Theory of the Navier Stokes Equations
Author: Giovanni Galdi
Publsiher: Springer Science & Business Media
Total Pages: 1018
Release: 2011-07-19
Genre: Mathematics
ISBN: 9780387096209

Download An Introduction to the Mathematical Theory of the Navier Stokes Equations Book in PDF, Epub and Kindle

The book provides a comprehensive, detailed and self-contained treatment of the fundamental mathematical properties of boundary-value problems related to the Navier-Stokes equations. These properties include existence, uniqueness and regularity of solutions in bounded as well as unbounded domains. Whenever the domain is unbounded, the asymptotic behavior of solutions is also investigated. This book is the new edition of the original two volume book, under the same title, published in 1994. In this new edition, the two volumes have merged into one and two more chapters on steady generalized oseen flow in exterior domains and steady Navier–Stokes flow in three-dimensional exterior domains have been added. Most of the proofs given in the previous edition were also updated. An introductory first chapter describes all relevant questions treated in the book and lists and motivates a number of significant and still open questions. It is written in an expository style so as to be accessible also to non-specialists.Each chapter is preceded by a substantial, preliminary discussion of the problems treated, along with their motivation and the strategy used to solve them. Also, each chapter ends with a section dedicated to alternative approaches and procedures, as well as historical notes. The book contains more than 400 stimulating exercises, at different levels of difficulty, that will help the junior researcher and the graduate student to gradually become accustomed with the subject. Finally, the book is endowed with a vast bibliography that includes more than 500 items. Each item brings a reference to the section of the book where it is cited. The book will be useful to researchers and graduate students in mathematics in particular mathematical fluid mechanics and differential equations. Review of First Edition, First Volume: “The emphasis of this book is on an introduction to the mathematical theory of the stationary Navier-Stokes equations. It is written in the style of a textbook and is essentially self-contained. The problems are presented clearly and in an accessible manner. Every chapter begins with a good introductory discussion of the problems considered, and ends with interesting notes on different approaches developed in the literature. Further, stimulating exercises are proposed. (Mathematical Reviews, 1995)

Mathematical Modelling Applied Analysis and Computation

Mathematical Modelling  Applied Analysis and Computation
Author: Jagdev Singh,Devendra Kumar,Hemen Dutta,Dumitru Baleanu,Sunil Dutt Purohit
Publsiher: Springer Nature
Total Pages: 311
Release: 2019-08-31
Genre: Mathematics
ISBN: 9789811396083

Download Mathematical Modelling Applied Analysis and Computation Book in PDF, Epub and Kindle

This book contains original research papers presented at the International Conference on Mathematical Modelling, Applied Analysis and Computation, held at JECRC University, Jaipur, India, on 6-8 July, 2018. Organized into 20 chapters, the book focuses on theoretical and applied aspects of various types of mathematical modelling such as equations of various types, fuzzy mathematical models, automata, Petri nets and bond graphs for systems of dynamic nature and the usage of numerical techniques in handling modern problems of science, engineering and finance. It covers the applications of mathematical modelling in physics, chemistry, biology, mechanical engineering, civil engineering, computer science, social science and finance. A wide variety of dynamical systems like deterministic, stochastic, continuous, discrete or hybrid, with respect to time, are discussed in the book. It provides the mathematical modelling of various problems arising in science and engineering, and also new efficient numerical approaches for solving linear and nonlinear problems and rigorous mathematical theories, which can be used to analyze a different kind of mathematical models. The conference was aimed at fostering cooperation among students and researchers in areas of applied analysis, engineering and computation with the deliberations to inculcate new research ideas in their relevant fields. This volume will provide a comprehensive introduction to recent theories and applications of mathematical modelling and numerical simulation, which will be a valuable resource for graduate students and researchers of mathematical modelling and industrial mathematics.

Interfaces Modeling Analysis Numerics

Interfaces  Modeling  Analysis  Numerics
Author: Eberhard Bänsch,Klaus Deckelnick,Harald Garcke,Paola Pozzi
Publsiher: Springer Nature
Total Pages: 186
Release: 2023-11-11
Genre: Mathematics
ISBN: 9783031355509

Download Interfaces Modeling Analysis Numerics Book in PDF, Epub and Kindle

These lecture notes are dedicated to the mathematical modelling, analysis and computation of interfaces and free boundary problems appearing in geometry and in various applications, ranging from crystal growth, tumour growth, biological membranes to porous media, two-phase flows, fluid-structure interactions, and shape optimization. We first give an introduction to classical methods from differential geometry and systematically derive the governing equations from physical principles. Then we will analyse parametric approaches to interface evolution problems and derive numerical methods which will be thoroughly analysed. In addition, implicit descriptions of interfaces such as phase field and level set methods will be analysed. Finally, we will discuss numerical methods for complex interface evolutions and will focus on two phase flow problems as an important example of such evolutions.

Parabolic Equations with Irregular Data and Related Issues

Parabolic Equations with Irregular Data and Related Issues
Author: Claude Le Bris,Pierre-Louis Lions
Publsiher: Walter de Gruyter GmbH & Co KG
Total Pages: 156
Release: 2019-06-17
Genre: Mathematics
ISBN: 9783110635508

Download Parabolic Equations with Irregular Data and Related Issues Book in PDF, Epub and Kindle

This book studies the existence and uniqueness of solutions to parabolic-type equations with irregular coefficients and/or initial conditions. It elaborates on the DiPerna-Lions theory of renormalized solutions to linear transport equations and related equations, and also examines the connection between the results on the partial differential equation and the well-posedness of the underlying stochastic/ordinary differential equation.

The Application of Mathematics to Physics and Nonlinear Science

The Application of Mathematics to Physics and Nonlinear Science
Author: Andrei Ludu
Publsiher: MDPI
Total Pages: 122
Release: 2020-04-16
Genre: Mathematics
ISBN: 9783039287260

Download The Application of Mathematics to Physics and Nonlinear Science Book in PDF, Epub and Kindle

Nonlinear science is the science of, among other exotic phenomena, unexpected and unpredictable behavior, catastrophes, complex interactions, and significant perturbations. Ocean and atmosphere dynamics, weather, many bodies in interaction, ultra-high intensity excitations, life, formation of natural patterns, and coupled interactions between components or different scales are only a few examples of systems where nonlinear science is necessary. All outstanding, self-sustained, and stable structures in space and time exist and protrude out of a regular linear background of states mainly because they identify themselves from the rest by being highly localized in range, time, configuration, states, and phase spaces. Guessing how high up you drive toward the top of the mountain by compiling your speed, road slope, and trip duration is a linear model, but predicting the occurrence around a turn of a boulder fallen on the road is a nonlinear phenomenon. In an effort to grasp and understand nonlinear phenomena, scientists have developed several mathematical approaches including inverse scattering theory, Backlund and groups of transformations, bilinear method, and several other detailed technical procedures. In this Special Issue, we introduce a few very recent approaches together with their physical meaning and applications. We present here five important papers on waves, unsteady flows, phases separation, ocean dynamics, nonlinear optic, viral dynamics, and the self-appearance of patterns for spatially extended systems, which are problems that have aroused scientists’ interest for decades, yet still cannot be predicted and have their generating mechanism and stability open to debate. The aim of this Special Issue was to present these most debated and interesting topics from nonlinear science for which, despite the existence of highly developed mathematical tools of investigation, there are still fundamental open questions.