Nonlinear Dynamics in Computational Neuroscience

Nonlinear Dynamics in Computational Neuroscience
Author: Fernando Corinto,Alessandro Torcini
Publsiher: Springer
Total Pages: 141
Release: 2018-06-19
Genre: Technology & Engineering
ISBN: 9783319710488

Download Nonlinear Dynamics in Computational Neuroscience Book in PDF, Epub and Kindle

This book provides an essential overview of computational neuroscience. It addresses a broad range of aspects, from physiology to nonlinear dynamical approaches to understanding neural computation, and from the simulation of brain circuits to the development of engineering devices and platforms for neuromorphic computation. Written by leading experts in such diverse fields as neuroscience, physics, psychology, neural engineering, cognitive science and applied mathematics, the book reflects the remarkable advances that have been made in the field of computational neuroscience, an emerging discipline devoted to the study of brain functions in terms of the information-processing properties of the structures forming the nervous system. The contents build on the workshop “Nonlinear Dynamics in Computational Neuroscience: from Physics and Biology to ICT,” which was held in Torino, Italy in September 2015.

Dynamical Systems in Neuroscience

Dynamical Systems in Neuroscience
Author: Eugene M. Izhikevich
Publsiher: MIT Press
Total Pages: 459
Release: 2010-01-22
Genre: Medical
ISBN: 9780262514200

Download Dynamical Systems in Neuroscience Book in PDF, Epub and Kindle

Explains the relationship of electrophysiology, nonlinear dynamics, and the computational properties of neurons, with each concept presented in terms of both neuroscience and mathematics and illustrated using geometrical intuition. In order to model neuronal behavior or to interpret the results of modeling studies, neuroscientists must call upon methods of nonlinear dynamics. This book offers an introduction to nonlinear dynamical systems theory for researchers and graduate students in neuroscience. It also provides an overview of neuroscience for mathematicians who want to learn the basic facts of electrophysiology. Dynamical Systems in Neuroscience presents a systematic study of the relationship of electrophysiology, nonlinear dynamics, and computational properties of neurons. It emphasizes that information processing in the brain depends not only on the electrophysiological properties of neurons but also on their dynamical properties. The book introduces dynamical systems, starting with one- and two-dimensional Hodgkin-Huxley-type models and continuing to a description of bursting systems. Each chapter proceeds from the simple to the complex, and provides sample problems at the end. The book explains all necessary mathematical concepts using geometrical intuition; it includes many figures and few equations, making it especially suitable for non-mathematicians. Each concept is presented in terms of both neuroscience and mathematics, providing a link between the two disciplines. Nonlinear dynamical systems theory is at the core of computational neuroscience research, but it is not a standard part of the graduate neuroscience curriculum—or taught by math or physics department in a way that is suitable for students of biology. This book offers neuroscience students and researchers a comprehensive account of concepts and methods increasingly used in computational neuroscience. An additional chapter on synchronization, with more advanced material, can be found at the author's website, www.izhikevich.com.

Nonlinear Analysis in Neuroscience and Behavioral Research

Nonlinear Analysis in Neuroscience and Behavioral Research
Author: Tobias A. Mattei
Publsiher: Frontiers Media SA
Total Pages: 273
Release: 2016-10-31
Genre: Neurosciences. Biological psychiatry. Neuropsychiatry
ISBN: 9782889199969

Download Nonlinear Analysis in Neuroscience and Behavioral Research Book in PDF, Epub and Kindle

Although nonlinear dynamics have been mastered by physicists and mathematicians for a long time (as most physical systems are inherently nonlinear in nature), the recent successful application of nonlinear methods to modeling and predicting several evolutionary, ecological, physiological, and biochemical processes has generated great interest and enthusiasm among researchers in computational neuroscience and cognitive psychology. Additionally, in the last years it has been demonstrated that nonlinear analysis can be successfully used to model not only basic cellular and molecular data but also complex cognitive processes and behavioral interactions. The theoretical features of nonlinear systems (such unstable periodic orbits, period-doubling bifurcations and phase space dynamics) have already been successfully applied by several research groups to analyze the behavior of a variety of neuronal and cognitive processes. Additionally the concept of strange attractors has lead to a new understanding of information processing which considers higher cognitive functions (such as language, attention, memory and decision making) as complex systems emerging from the dynamic interaction between parallel streams of information flowing between highly interconnected neuronal clusters organized in a widely distributed circuit and modulated by key central nodes. Furthermore, the paradigm of self-organization derived from the nonlinear dynamics theory has offered an interesting account of the phenomenon of emergence of new complex cognitive structures from random and non-deterministic patterns, similarly to what has been previously observed in nonlinear studies of fluid dynamics. Finally, the challenges of coupling massive amount of data related to brain function generated from new research fields in experimental neuroscience (such as magnetoencephalography, optogenetics and single-cell intra-operative recordings of neuronal activity) have generated the necessity of new research strategies which incorporate complex pattern analysis as an important feature of their algorithms. Up to now nonlinear dynamics has already been successfully employed to model both basic single and multiple neurons activity (such as single-cell firing patterns, neural networks synchronization, autonomic activity, electroencephalographic measurements, and noise modulation in the cerebellum), as well as higher cognitive functions and complex psychiatric disorders. Similarly, previous experimental studies have suggested that several cognitive functions can be successfully modeled with basis on the transient activity of large-scale brain networks in the presence of noise. Such studies have demonstrated that it is possible to represent typical decision-making paradigms of neuroeconomics by dynamic models governed by ordinary differential equations with a finite number of possibilities at the decision points and basic heuristic rules which incorporate variable degrees of uncertainty. This e-book has include frontline research in computational neuroscience and cognitive psychology involving applications of nonlinear analysis, especially regarding the representation and modeling of complex neural and cognitive systems. Several experts teams around the world have provided frontline theoretical and experimental contributions (as well as reviews, perspectives and commentaries) in the fields of nonlinear modeling of cognitive systems, chaotic dynamics in computational neuroscience, fractal analysis of biological brain data, nonlinear dynamics in neural networks research, nonlinear and fuzzy logics in complex neural systems, nonlinear analysis of psychiatric disorders and dynamic modeling of sensorimotor coordination. Rather than a comprehensive compilation of the possible topics in neuroscience and cognitive research to which non-linear may be used, this e-book intends to provide some illustrative examples of the broad range of

Principles of Brain Dynamics

Principles of Brain Dynamics
Author: Mikhail I. Rabinovich,Karl J. Friston,Pablo Varona
Publsiher: MIT Press
Total Pages: 371
Release: 2023-12-05
Genre: Medical
ISBN: 9780262549905

Download Principles of Brain Dynamics Book in PDF, Epub and Kindle

Experimental and theoretical approaches to global brain dynamics that draw on the latest research in the field. The consideration of time or dynamics is fundamental for all aspects of mental activity—perception, cognition, and emotion—because the main feature of brain activity is the continuous change of the underlying brain states even in a constant environment. The application of nonlinear dynamics to the study of brain activity began to flourish in the 1990s when combined with empirical observations from modern morphological and physiological observations. This book offers perspectives on brain dynamics that draw on the latest advances in research in the field. It includes contributions from both theoreticians and experimentalists, offering an eclectic treatment of fundamental issues. Topics addressed range from experimental and computational approaches to transient brain dynamics to the free-energy principle as a global brain theory. The book concludes with a short but rigorous guide to modern nonlinear dynamics and their application to neural dynamics.

Neuro informatics and Neural Modelling

Neuro informatics and Neural Modelling
Author: F. Moss,S. Gielen
Publsiher: Gulf Professional Publishing
Total Pages: 1080
Release: 2001-06-26
Genre: Mathematics
ISBN: 9780080537429

Download Neuro informatics and Neural Modelling Book in PDF, Epub and Kindle

How do sensory neurons transmit information about environmental stimuli to the central nervous system? How do networks of neurons in the CNS decode that information, thus leading to perception and consciousness? These questions are among the oldest in neuroscience. Quite recently, new approaches to exploration of these questions have arisen, often from interdisciplinary approaches combining traditional computational neuroscience with dynamical systems theory, including nonlinear dynamics and stochastic processes. In this volume in two sections a selection of contributions about these topics from a collection of well-known authors is presented. One section focuses on computational aspects from single neurons to networks with a major emphasis on the latter. The second section highlights some insights that have recently developed out of the nonlinear systems approach.

Multiscale Analysis and Nonlinear Dynamics

Multiscale Analysis and Nonlinear Dynamics
Author: Misha Meyer Pesenson
Publsiher: John Wiley & Sons
Total Pages: 307
Release: 2013-09-13
Genre: Science
ISBN: 9783527671656

Download Multiscale Analysis and Nonlinear Dynamics Book in PDF, Epub and Kindle

Since modeling multiscale phenomena in systems biology and neuroscience is a highly interdisciplinary task, the editor of the book invited experts in bio-engineering, chemistry, cardiology, neuroscience, computer science, and applied mathematics, to provide their perspectives. Each chapter is a window into the current state of the art in the areas of research discussed and the book is intended for advanced researchers interested in recent developments in these fields. While multiscale analysis is the major integrating theme of the book, its subtitle does not call for bridging the scales from genes to behavior, but rather stresses the unifying perspective offered by the concepts referred to in the title. It is believed that the interdisciplinary approach adopted here will be beneficial for all the above mentioned fields.

Principles of Brain Dynamics

Principles of Brain Dynamics
Author: Mikhail I. Rabinovich,Karl J. Friston,Pablo Varona
Publsiher: MIT Press
Total Pages: 355
Release: 2012-07-06
Genre: Medical
ISBN: 9780262304658

Download Principles of Brain Dynamics Book in PDF, Epub and Kindle

Experimental and theoretical approaches to global brain dynamics that draw on the latest research in the field. The consideration of time or dynamics is fundamental for all aspects of mental activity—perception, cognition, and emotion—because the main feature of brain activity is the continuous change of the underlying brain states even in a constant environment. The application of nonlinear dynamics to the study of brain activity began to flourish in the 1990s when combined with empirical observations from modern morphological and physiological observations. This book offers perspectives on brain dynamics that draw on the latest advances in research in the field. It includes contributions from both theoreticians and experimentalists, offering an eclectic treatment of fundamental issues. Topics addressed range from experimental and computational approaches to transient brain dynamics to the free-energy principle as a global brain theory. The book concludes with a short but rigorous guide to modern nonlinear dynamics and their application to neural dynamics.

Mathematical Foundations of Neuroscience

Mathematical Foundations of Neuroscience
Author: G. Bard Ermentrout,David H. Terman
Publsiher: Springer Science & Business Media
Total Pages: 434
Release: 2010-07-08
Genre: Mathematics
ISBN: 9780387877075

Download Mathematical Foundations of Neuroscience Book in PDF, Epub and Kindle

Arising from several courses taught by the authors, this book provides a needed overview illustrating how dynamical systems and computational analysis have been used in understanding the types of models that come out of neuroscience.