Nonlinear Physics of Ecosystems

Nonlinear Physics of Ecosystems
Author: Ehud Meron
Publsiher: CRC Press
Total Pages: 359
Release: 2015-04-15
Genre: Nature
ISBN: 9781439826324

Download Nonlinear Physics of Ecosystems Book in PDF, Epub and Kindle

Nonlinear Physics of Ecosystems introduces the concepts and tools of pattern formation theory and demonstrates their utility in ecological research using problems from spatial ecology. Written in language understandable to both physicists and ecologists in most parts, the book reveals the mechanisms of pattern formation and pattern dynamics. It also explores the implications of these mechanisms in important ecological problems. The first part of the book gives an overview of pattern formation and spatial ecology, showing how these disparate research fields are strongly related to one another. The next part presents an advanced account of pattern formation theory. The final part describes applications of pattern formation theory to ecological problems, including self-organized vegetation patchiness, desertification, and biodiversity in changing environments. Focusing on the emerging interface between spatial ecology and pattern formation, this book shows how pattern formation methods address a variety of ecological problems using water-limited ecosystems as a case study. Readers with basic knowledge of linear algebra and ordinary differential equations will develop a general understanding of pattern formation theory while more advanced readers who are familiar with partial differential equations will appreciate the descriptions of analytical tools used to study pattern formation and dynamics.

Chaos in Ecology

Chaos in Ecology
Author: J. M. Cushing
Publsiher: Elsevier
Total Pages: 248
Release: 2003
Genre: Mathematics
ISBN: 0121988767

Download Chaos in Ecology Book in PDF, Epub and Kindle

Chaos in Ecology is a convincing demonstration of chaos in a biological population. The book synthesizes an ecologically focused interdisciplinary blend of non-linear dynamics theory, statistics, and experimentation yielding results of uncommon clarity and rigor. Topics include fundamental issues that are of general and widespread importance to population biology and ecology. Detailed descriptions are included of the mathematical, statistical, and experimental steps they used to explore nonlinear dynamics in ecology. Beginning with a brief overview of chaos theory and its implications for ecology. The book continues by deriving and rigorously testing a mathematical model that is closely wedded to biological mechanisms of their research organism. Therefrom were generated a variety of predictions that are fundamental to chaos theory and experiments were designed and analyzed to test those predictions. Discussion of patterns in chaos and how they can be investigated using real data follows and book ends with a discussion of the salient lessons learned from this research program Book jacket.

Nonlinear Dynamics of Interacting Populations

Nonlinear Dynamics of Interacting Populations
Author: A. D. Bazykin,Aleksandr Iosifovich Khibnik,Bernd Krauskopf
Publsiher: World Scientific
Total Pages: 224
Release: 1998
Genre: Science
ISBN: 9810216858

Download Nonlinear Dynamics of Interacting Populations Book in PDF, Epub and Kindle

This book contains a systematic study of ecological communities of two or three interacting populations. Starting from the Lotka-Volterra system, various regulating factors are considered, such as rates of birth and death, predation and competition. The different factors can have a stabilizing or a destabilizing effect on the community, and their interplay leads to increasingly complicated behavior. Studying and understanding this path to greater dynamical complexity of ecological systems constitutes the backbone of this book. On the mathematical side, the tool of choice is the qualitative theory of dynamical systems — most importantly bifurcation theory, which describes the dependence of a system on the parameters. This approach allows one to find general patterns of behavior that are expected to be observed in ecological models. Of special interest is the reaction of a given model to disturbances of its present state, as well as to changes in the external conditions. This leads to the general idea of “dangerous boundaries” in the state and parameter space of an ecological system. The study of these boundaries allows one to analyze and predict qualitative and often sudden changes of the dynamics — a much-needed tool, given the increasing antropogenic load on the biosphere.As a spin-off from this approach, the book can be used as a guided tour of bifurcation theory from the viewpoint of application. The interested reader will find a wealth of intriguing examples of how known bifurcations occur in applications. The book can in fact be seen as bridging the gap between mathematical biology and bifurcation theory.

Meta Ecosystem Dynamics

Meta Ecosystem Dynamics
Author: Frederic Guichard,Justin Marleau
Publsiher: Springer Nature
Total Pages: 112
Release: 2021-09-25
Genre: Mathematics
ISBN: 9783030834548

Download Meta Ecosystem Dynamics Book in PDF, Epub and Kindle

This book presents current meta-ecosystem models and their derivation from classical ecosystem and metapopulation theories. Specifically, it reviews recent modelling efforts that have emphasized the role of nonlinear dynamics on spatial and food web networks, and which have cast their implications within the context of spatial synchrony and ecological stoichiometry. It suggests that these recent advances naturally lead to a generalization of meta-ecosystem theories to spatial fluxes of matter that have both a trophic and non-trophic impact on species. Ecosystem dynamics refers to the cycling of matter and energy across ecological compartments through processes such as consumption and recycling. Spatial dynamics established its ecological roots with metapopulation theories and focuses on scaling up local ecological processes through the limited movement of individuals and matter. Over the last 15 years, theories integrating ecosystem and spatial dynamics have quickly coalesced into meta-ecosystem theories, the focus of this book. The book will be of interest to graduate students and researchers who wish to learn more about the synthesis of ecosystem and spatial dynamics, which form the foundation of the theory of meta-ecosystems.

Nonlinear Dynamics Materials Theory and Experiments

Nonlinear Dynamics  Materials  Theory and Experiments
Author: Mustapha Tlidi,Marcel. G. Clerc
Publsiher: Springer
Total Pages: 361
Release: 2015-11-14
Genre: Science
ISBN: 9783319248714

Download Nonlinear Dynamics Materials Theory and Experiments Book in PDF, Epub and Kindle

This book presents recent advances, new ideas and novel techniques related to the field of nonlinear dynamics, including localized pattern formation, self-organization and chaos. Various natural systems ranging from nonlinear optics to mechanics, fluids and magnetic are considered. The aim of this book is to gather specialists from these various fields of research to promote cross-fertilization and transfer of knowledge between these active research areas. In particular, nonlinear optics and laser physics constitute an important part in this issue due to the potential applications for all-optical control of light, optical storage, and information processing. Other possible applications include the generation of ultra-short pulses using all-fiber cavities.

Self Organization in Complex Ecosystems MPB 42

Self Organization in Complex Ecosystems   MPB 42
Author: Ricard Solé,Jordi Bascompte
Publsiher: Princeton University Press
Total Pages: 384
Release: 2012-01-06
Genre: Science
ISBN: 9781400842933

Download Self Organization in Complex Ecosystems MPB 42 Book in PDF, Epub and Kindle

Can physics be an appropriate framework for the understanding of ecological science? Most ecologists would probably agree that there is little relation between the complexity of natural ecosystems and the simplicity of any example derived from Newtonian physics. Though ecologists have long been interested in concepts originally developed by statistical physicists and later applied to explain everything from why stock markets crash to why rivers develop particular branching patterns, applying such concepts to ecosystems has remained a challenge. Self-Organization in Complex Ecosystems is the first book to clearly synthesize what we have learned about the usefulness of tools from statistical physics in ecology. Ricard Solé and Jordi Bascompte provide a comprehensive introduction to complex systems theory, and ask: do universal laws shape the structure of ecosystems, at least at some scales? They offer the most compelling array of theoretical evidence to date of the potential of nonlinear ecological interactions to generate nonrandom, self-organized patterns at all levels. Tackling classic ecological questions--from population dynamics to biodiversity to macroevolution--the book's novel presentation of theories and data shows the power of statistical physics and complexity in ecology. Self-Organization in Complex Ecosystems will be a staple resource for years to come for ecologists interested in complex systems theory as well as mathematicians and physicists interested in ecology.

Nonlinear PDEs A Dynamical Systems Approach

Nonlinear PDEs  A Dynamical Systems Approach
Author: Guido Schneider,Hannes Uecker
Publsiher: American Mathematical Soc.
Total Pages: 575
Release: 2017-10-26
Genre: Differential equations, Nonlinear
ISBN: 9781470436131

Download Nonlinear PDEs A Dynamical Systems Approach Book in PDF, Epub and Kindle

This is an introductory textbook about nonlinear dynamics of PDEs, with a focus on problems over unbounded domains and modulation equations. The presentation is example-oriented, and new mathematical tools are developed step by step, giving insight into some important classes of nonlinear PDEs and nonlinear dynamics phenomena which may occur in PDEs. The book consists of four parts. Parts I and II are introductions to finite- and infinite-dimensional dynamics defined by ODEs and by PDEs over bounded domains, respectively, including the basics of bifurcation and attractor theory. Part III introduces PDEs on the real line, including the Korteweg-de Vries equation, the Nonlinear Schrödinger equation and the Ginzburg-Landau equation. These examples often occur as simplest possible models, namely as amplitude or modulation equations, for some real world phenomena such as nonlinear waves and pattern formation. Part IV explores in more detail the connections between such complicated physical systems and the reduced models. For many models, a mathematically rigorous justification by approximation results is given. The parts of the book are kept as self-contained as possible. The book is suitable for self-study, and there are various possibilities to build one- or two-semester courses from the book.

Landscapes of Collectivity in the Life Sciences

Landscapes of Collectivity in the Life Sciences
Author: Snait B. Gissis,Ehud Lamm,Ayelet Shavit
Publsiher: MIT Press
Total Pages: 433
Release: 2018-01-12
Genre: Science
ISBN: 9780262036856

Download Landscapes of Collectivity in the Life Sciences Book in PDF, Epub and Kindle

Broad perspective on collectivity in the life sciences, from microorganisms to human consensus, and the theoretical and empirical opportunities and challenges. Many researchers and scholars in the life sciences have become increasingly critical of the traditional methodological focus on the individual. This volume counters such methodological individualism by exploring recent and influential work in the life sciences that utilizes notions of collectivity, sociality, rich interactions, and emergent phenomena as essential explanatory tools to handle numerous persistent scientific questions in the life sciences. The contributors consider case studies of collectivity that range from microorganisms to human consensus, discussing theoretical and empirical challenges and the innovative methods and solutions scientists have devised. The contributors offer historical, philosophical, and biological perspectives on collectivity, and describe collective phenomena seen in insects, the immune system, communication, and human collectivity, with examples ranging from cooperative transport in the longhorn crazy ant to the evolution of autobiographical memory. They examine ways of explaining collectivity, including case studies and modeling approaches, and explore collectivity's explanatory power. They present a comprehensive look at a specific case of collectivity: the Holobiont notion (the idea of a multi-species collective, a host and diverse microorganisms) and the hologenome theory (which posits that the holobiont and its hologenome are a unit of adaption). The volume concludes with reflections on the work of the late physicist Eshel Ben-Jacob, pioneer in the study of collective phenomena in living systems. Contributors Oren Bader, John Beatty, Dinah R. Davison, Daniel Dor, Ofer Feinerman, Raghavendra Gadagkar, Scott F. Gilbert, Snait B. Gissis, Deborah M. Gordon, James Griesemer, Zachariah I. Grochau-Wright, Erik R. Hanschen, Eva Jablonka, Mohit Kumar Jolly, Anat Kolumbus, Ehud Lamm, Herbert Levine, Arnon Levy, Xue-Fei Li, Elisabeth A. Lloyd, Yael Lubin, Eva Maria Luef, Ehud Meron, Richard E. Michod, Samir Okasha, Simone Pika, Joan Roughgarden, Eugene Rosenberg, Ayelet Shavit, Yael Silver, Alfred I. Tauber, Ilana Zilber-Rosenberg