Quantitative Biology Dynamics of Living Systems

Quantitative Biology  Dynamics of Living Systems
Author: Noriko Hiroi,Viji M. Draviam,Tetsuya J. Kobayashi,Akira Funahashi,Chun-Biu Li,Douglas B. Murray,Hiroaki Takagi,Ziya Kalay,Rinshi S. Kasai,Jason Edward Shoemaker,Akatsuki Kimura,Naoki A. Irie
Publsiher: Frontiers Media SA
Total Pages: 138
Release: 2017-07-24
Genre: Electronic book
ISBN: 9782889452132

Download Quantitative Biology Dynamics of Living Systems Book in PDF, Epub and Kindle

With the emergence of Systems Biology, there is a greater realization that the whole behavior of a living system may not be simply described as the sum of its elements. To represent a living system using mathematical principles, practical quantities with units are required. Quantities are not only the bridge between mathematical description and biological observations; they often stand as essential elements similar to genome information in genetics. This important realization has greatly rejuvenated research in the area of Quantitative Biology. Because of the increased need for precise quantification, a new era of technological development has opened. For example, spatio-temporal high-resolution imaging enables us to track single molecule behavior in vivo. Clever artificial control of experimental conditions and molecular structures has expanded the variety of quantities that can be directly measured. In addition, improved computational power and novel algorithms for analyzing theoretical models have made it possible to investigate complex biological phenomena. This research topic is organized on two aspects of technological advances which are the backbone of Quantitative Biology: (i) visualization of biomolecules, their dynamics and function, and (ii) generic technologies of model optimization and numeric integration. We have also included articles highlighting the need for new quantitative approaches to solve some of the long-standing cell biology questions. In the first section on visualizing biomolecules, four cutting-edge techniques are presented. Ichimura et al. provide a review of quantum dots including their basic characteristics and their applications (for example, single particle tracking). Horisawa discusses a quick and stable labeling technique using click chemistry with distinct advantages compared to fluorescent protein tags. The relatively small physical size, stability of covalent bond and simple metabolic labeling procedures in living cells provides this type of technology a potential to allow long-term imaging with least interference to protein function. Obien et al. review strategies to control microelectrodes for detecting neuronal activity and discuss techniques for higher resolution and quality of recordings using monolithic integration with on-chip circuitry. Finally, the original research article by Amariei et al. describes the oscillatory behavior of metabolites in bacteria. They describe a new method to visualize the periodic dynamics of metabolites in large scale cultures populations. These four articles contribute to the development of quantitative methods visualizing diverse targets: proteins, electrical signals and metabolites. In the second section of the topic, we have included articles on the development of computational tools to fully harness the potential of quantitative measurements through either calculation based on specific model or validation of the model itself. Kimura et al. introduce optimization procedures to search for parameters in a quantitative model that can reproduce experimental data. They present four examples: transcriptional regulation, bacterial chemotaxis, morphogenesis of tissues and organs, and cell cycle regulation. The original research article by Sumiyoshi et al. presents a general methodology to accelerate stochastic simulation efforts. They introduce a method to achieve 130 times faster computation of stochastic models by applying GPGPU. The strength of such accelerated numerical calculation are sometimes underestimated in biology; faster simulation enables multiple runs and in turn improved accuracy of numerical calculation which may change the final conclusion of modeling study. This also highlights the need to carefully assess simulation results and estimations using computational tools.

Dynamics of Biological Systems

Dynamics of Biological Systems
Author: Michael Small
Publsiher: CRC Press
Total Pages: 286
Release: 2011-08-25
Genre: Mathematics
ISBN: 9781439853368

Download Dynamics of Biological Systems Book in PDF, Epub and Kindle

From the spontaneous rapid firing of cortical neurons to the spatial diffusion of disease epidemics, biological systems exhibit rich dynamic behaviour over a vast range of time and space scales. Unifying many of these diverse phenomena, Dynamics of Biological Systems provides the computational and mathematical platform from which to understand the underlying processes of the phenomena. Through an extensive tour of various biological systems, the text introduces computational methods for simulating spatial diffusion processes in excitable media, such as the human heart, as well as mathematical tools for dealing with systems of nonlinear ordinary and partial differential equations, such as neuronal activation and disease diffusion. The mathematical models and computer simulations offer insight into the dynamics of temporal and spatial biological systems, including cardiac pacemakers, artificial electrical defibrillation, pandemics, pattern formation, flocking behaviour, the interaction of autonomous agents, and hierarchical and structured network topologies. Tools from complex systems and complex networks are also presented for dealing with real phenomenological systems. With exercises and projects in each chapter, this classroom-tested text shows students how to apply a variety of mathematical and computational techniques to model and analyze the temporal and spatial phenomena of biological systems. MATLAB® implementations of algorithms and case studies are available on the author’s website.

Quantitative Biology

Quantitative Biology
Author: Michael E. Wall
Publsiher: CRC Press
Total Pages: 406
Release: 2012-08-25
Genre: Science
ISBN: 9781439827222

Download Quantitative Biology Book in PDF, Epub and Kindle

Quantitative methods are revolutionizing modern molecular and cellular biology. Groundbreaking technical advances are fueling the rapid expansion in our ability to observe, as seen in multidisciplinary studies that integrate theory, computation, experimental assays, and the control of microenvironments. Integrating new experimental and theoretical methods, Quantitative Biology: From Molecular to Cellular Systems gives both new and established researchers a solid foundation for starting work in this field. The book is organized into three sections: Fundamental Concepts covers bold ideas that inspire novel approaches in modern quantitative biology. It offers perspectives on evolutionary dynamics, system design principles, chance and memory, and information processing in biology. Methods describes recently developed or improved techniques that are transforming biological research. It covers experimental methods for studying single-molecule biochemistry, small-angle scattering from biomolecules, subcellular localization of proteins, and single-cell behavior. It also describes theoretical methods for synthetic biology and modeling random variations among cells. Molecular and Cellular Systems focuses on specific biological systems where modern quantitative biology methods are making an impact. It incorporates case studies of biological systems for which new concepts or methods are increasing our understanding. Examples include protein kinase at the molecular level, the genetic switch of phage lambda at the regulatory system level, and Escherichia coli chemotaxis at the cellular level. In short, Quantitative Biology presents practical tools for the observation, modeling, design, and manipulation of biological systems from the molecular to the cellular levels.

Quantitative Elements of General Biology

Quantitative Elements of General Biology
Author: Ivan Maly
Publsiher: Springer Nature
Total Pages: 200
Release: 2021-08-28
Genre: Science
ISBN: 9783030791469

Download Quantitative Elements of General Biology Book in PDF, Epub and Kindle

This monograph sketches out a broad spectrum of problems (from evolution and metabolism to morphogenesis and biogeographical dynamics) whose solution has been impacted by mathematical models. Each of the selected examples has led to the recognition—and set direction to further study—of certain fundamental but unintuitive properties of biological systems, such as the making and breaking of specific symmetries that underlie morphogenesis. Whether they are long-established or only recently accepted, these models are selected for being thought-provoking and illuminating both the achievements and the gaps in our current understanding of the given area of biology. The selection of models is also meant to bring to the fore the existing degree of unity in the quantitative approach to diverse general-biological questions and in the systems-level properties that are discovered across the levels of biological organization. It is the thesis of this book that further cultivation of such unity is a way forward as we progress toward a general theory of living matter. This is an ideal book for students (in the broadest sense) of biology who wish to learn from this attempt to present the exemplary models, their methodological lessons, and the outline of a unified theory of living matter that is now beginning to emerge. In addition to a doctoral student preparing for quantitative biology research, this reader could also be an interdisciplinary scientist transitioning to biology. The latter—for example, a physicist or an engineer—may be comfortable with the mathematical apparatus and prepared to quickly enter the intended area of work, but desires a broader foundation in biology from the quantitative perspective.

Quantitative Biology

Quantitative Biology
Author: Brian Munsky,William S. Hlavacek,Lev S. Tsimring
Publsiher: MIT Press
Total Pages: 729
Release: 2018-08-21
Genre: Science
ISBN: 9780262038089

Download Quantitative Biology Book in PDF, Epub and Kindle

An introduction to the quantitative modeling of biological processes, presenting modeling approaches, methodology, practical algorithms, software tools, and examples of current research. The quantitative modeling of biological processes promises to expand biological research from a science of observation and discovery to one of rigorous prediction and quantitative analysis. The rapidly growing field of quantitative biology seeks to use biology's emerging technological and computational capabilities to model biological processes. This textbook offers an introduction to the theory, methods, and tools of quantitative biology. The book first introduces the foundations of biological modeling, focusing on some of the most widely used formalisms. It then presents essential methodology for model-guided analyses of biological data, covering such methods as network reconstruction, uncertainty quantification, and experimental design; practical algorithms and software packages for modeling biological systems; and specific examples of current quantitative biology research and related specialized methods. Most chapters offer problems, progressing from simple to complex, that test the reader's mastery of such key techniques as deterministic and stochastic simulations and data analysis. Many chapters include snippets of code that can be used to recreate analyses and generate figures related to the text. Examples are presented in the three popular computing languages: Matlab, R, and Python. A variety of online resources supplement the the text. The editors are long-time organizers of the Annual q-bio Summer School, which was founded in 2007. Through the school, the editors have helped to train more than 400 visiting students in Los Alamos, NM, Santa Fe, NM, San Diego, CA, Albuquerque, NM, and Fort Collins, CO. This book is inspired by the school's curricula, and most of the contributors have participated in the school as students, lecturers, or both. Contributors John H. Abel, Roberto Bertolusso, Daniela Besozzi, Michael L. Blinov, Clive G. Bowsher, Fiona A. Chandra, Paolo Cazzaniga, Bryan C. Daniels, Bernie J. Daigle, Jr., Maciej Dobrzynski, Jonathan P. Doye, Brian Drawert, Sean Fancer, Gareth W. Fearnley, Dirk Fey, Zachary Fox, Ramon Grima, Andreas Hellander, Stefan Hellander, David Hofmann, Damian Hernandez, William S. Hlavacek, Jianjun Huang, Tomasz Jetka, Dongya Jia, Mohit Kumar Jolly, Boris N. Kholodenko, Markek Kimmel, Michał Komorowski, Ganhui Lan, Heeseob Lee, Herbert Levine, Leslie M Loew, Jason G. Lomnitz, Ard A. Louis, Grant Lythe, Carmen Molina-París, Ion I. Moraru, Andrew Mugler, Brian Munsky, Joe Natale, Ilya Nemenman, Karol Nienałtowski, Marco S. Nobile, Maria Nowicka, Sarah Olson, Alan S. Perelson, Linda R. Petzold, Sreenivasan Ponnambalam, Arya Pourzanjani, Ruy M. Ribeiro, William Raymond, William Raymond, Herbert M. Sauro, Michael A. Savageau, Abhyudai Singh, James C. Schaff, Boris M. Slepchenko, Thomas R. Sokolowski, Petr Šulc, Andrea Tangherloni, Pieter Rein ten Wolde, Philipp Thomas, Karen Tkach Tuzman, Lev S. Tsimring, Dan Vasilescu, Margaritis Voliotis, Lisa Weber

Quantitative Elements of General Biology

Quantitative Elements of General Biology
Author: Ivan V. Maly
Publsiher: Unknown
Total Pages: 0
Release: 2021
Genre: Biomathematics
ISBN: 830307914X

Download Quantitative Elements of General Biology Book in PDF, Epub and Kindle

This monograph sketches out a broad spectrum of problems (from evolution and metabolism to morphogenesis and biogeographical dynamics) whose solution has been impacted by mathematical models. Each of the selected examples has led to the recognition and set direction to further study of certain fundamental but unintuitive properties of biological systems, such as the making and breaking of specific symmetries that underlie morphogenesis. Whether they are long-established or only recently accepted, these models are selected for being thought-provoking and illuminating both the achievements and the gaps in our current understanding of the given area of biology. The selection of models is also meant to bring to the fore the existing degree of unity in the quantitative approach to diverse general-biological questions and in the systems-level properties that are discovered across the levels of biological organization. It is the thesis of this book that further cultivation of such unity is a way forward as we progress toward a general theory of living matter. This is an ideal book for students (in the broadest sense) of biology who wish to learn from this attempt to present the exemplary models, their methodological lessons, and the outline of a unified theory of living matter that is now beginning to emerge. In addition to a doctoral student preparing for quantitative biology research, this reader could also be an interdisciplinary scientist transitioning to biology. The latter for example, a physicist or an engineer may be comfortable with the mathematical apparatus and prepared to quickly enter the intended area of work, but desires a broader foundation in biology from the quantitative perspective.

Dynamics of Biological Systems

Dynamics of Biological Systems
Author: Michael Small
Publsiher: CRC Press
Total Pages: 284
Release: 2011-08-25
Genre: Mathematics
ISBN: 9781439897065

Download Dynamics of Biological Systems Book in PDF, Epub and Kindle

From the spontaneous rapid firing of cortical neurons to the spatial diffusion of disease epidemics, biological systems exhibit rich dynamic behaviour over a vast range of time and space scales. Unifying many of these diverse phenomena, Dynamics of Biological Systems provides the computational and mathematical platform from which to understand the

Understanding the Dynamics of Biological Systems

Understanding the Dynamics of Biological Systems
Author: Werner Dubitzky,Jennifer Southgate,Hendrik Fuß
Publsiher: Springer Science & Business Media
Total Pages: 238
Release: 2011-01-07
Genre: Science
ISBN: 9781441979643

Download Understanding the Dynamics of Biological Systems Book in PDF, Epub and Kindle

This book is intended as a communication platform to bridge the cultural, conceptual, and technological gap among the key systems biology disciplines of biology, mathematics, and information technology. To support this goal, contributors were asked to adopts an approach that appeals to audiences from different backgrounds.