Shape Classification and Analysis

Shape Classification and Analysis
Author: Luciano da Fona Costa,Roberto Marcond Cesar, Jr.
Publsiher: CRC Press
Total Pages: 685
Release: 2018-10-03
Genre: Technology & Engineering
ISBN: 9780849379406

Download Shape Classification and Analysis Book in PDF, Epub and Kindle

Because the properties of objects are largely determined by their geometric features, shape analysis and classification are essential to almost every applied scientific and technological area. A detailed understanding of the geometrical features of real-world entities (e.g., molecules, organs, materials and components) can provide important clues about their origin and function. When properly and carefully applied, shape analysis offers an exceedingly rich potential to yield useful applications in diverse areas ranging from material sciences to biology and neuroscience. Get Access to the Authors’ Own Cutting-Edge Open-Source Software Projects—and Then Actually Contribute to Them Yourself! The authors of Shape Analysis and Classification: Theory and Practice, Second Edition have improved the bestselling first edition by updating the tremendous progress in the field. This exceptionally accessible book presents the most advanced imaging techniques used for analyzing general biological shapes, such as those of cells, tissues, organs, and organisms. It implements numerous corrections and improvements—many of which were suggested by readers of the first edition—to optimize understanding and create what can truly be called an interactive learning experience. New Material in This Second Edition Addresses Graph and complex networks Dimensionality reduction Structural pattern recognition Shape representation using graphs Graphically reformulated, this edition updates equations, figures, and references, as well as slides that will be useful in related courses and general discussion. Like the popular first edition, this text is applicable to many fields and certain to become a favored addition to any library. Visit http://www.vision.ime.usp.br/~cesar/shape/ for Useful Software, Databases, and Videos

Shape Analysis and Classification

Shape Analysis and Classification
Author: Luciano da Fontoura Costa,Roberto Marcond Cesar Jr.
Publsiher: CRC Press
Total Pages: 688
Release: 2010-12-12
Genre: Computers
ISBN: 1420037552

Download Shape Analysis and Classification Book in PDF, Epub and Kindle

Advances in shape analysis impact a wide range of disciplines, from mathematics and engineering to medicine, archeology, and art. Anyone just entering the field, however, may find the few existing books on shape analysis too specific or advanced, and for students interested in the specific problem of shape recognition and characterization, traditio

Shape Classification and Analysis

Shape Classification and Analysis
Author: Luciano da Fontoura Costa
Publsiher: Unknown
Total Pages: 662
Release: 2009
Genre: Electronic Book
ISBN: OCLC:1132160967

Download Shape Classification and Analysis Book in PDF, Epub and Kindle

Shape Analysis and Classification

Shape Analysis and Classification
Author: Luciano da Fontoura Costa,Roberto Marcond Cesar, Jr.
Publsiher: CRC Press
Total Pages: 680
Release: 2000-12-20
Genre: Technology & Engineering
ISBN: 0849334934

Download Shape Analysis and Classification Book in PDF, Epub and Kindle

Advances in shape analysis impact a wide range of disciplines, from mathematics and engineering to medicine, archeology, and art. Anyone just entering the field, however, may find the few existing books on shape analysis too specific or advanced, and for students interested in the specific problem of shape recognition and characterization, traditional books on computer vision are too general. Shape Analysis and Classification: Theory and Practice offers an integrated and conceptual introduction to this dynamic field and its myriad applications. Beginning with the basic mathematical concepts, it deals with shape analysis, from image capture to pattern classification, and presents many of the most advanced and powerful techniques used in practice. The authors explore the relevant aspects of both shape characterization and recognition, and give special attention to practical issues, such as guidelines for implementation, validation, and assessment. Shape Analysis and Classification provides a rich resource for the computational characterization and classification of general shapes, from characters to biological entities. Both students and researchers can directly use its state-of-the-art concepts and techniques to solve their own problems involving the characterization and classification of visual shapes.

Innovations for Shape Analysis

Innovations for Shape Analysis
Author: Michael Breuß,Alfred Bruckstein,Petros Maragos
Publsiher: Springer Science & Business Media
Total Pages: 510
Release: 2013-04-04
Genre: Mathematics
ISBN: 9783642341410

Download Innovations for Shape Analysis Book in PDF, Epub and Kindle

The concept of 'shape' is at the heart of image processing and computer vision, yet researchers still have some way to go to replicate the human brain's ability to extrapolate meaning from the most basic of outlines. This volume reflects the advances of the last decade, which have also opened up tough new challenges in image processing. Today's applications require flexible models as well as efficient, mathematically justified algorithms that allow data processing within an acceptable timeframe. Examining important topics in continuous-scale and discrete modeling, as well as in modern algorithms, the book is the product of a key seminar focused on innovations in the field. It is a thorough introduction to the latest technology, especially given the tutorial style of a number of chapters. It also succeeds in identifying promising avenues for future research. The topics covered include mathematical morphology, skeletonization, statistical shape modeling, continuous-scale shape models such as partial differential equations and the theory of discrete shape descriptors. Some authors highlight new areas of enquiry such as partite skeletons, multi-component shapes, deformable shape models, and the use of distance fields. Combining the latest theoretical analysis with cutting-edge applications, this book will attract both academics and engineers.

Shape Analysis in Medical Image Analysis

Shape Analysis in Medical Image Analysis
Author: Shuo Li,João Manuel R. S. Tavares
Publsiher: Springer Science & Business Media
Total Pages: 442
Release: 2014-01-28
Genre: Technology & Engineering
ISBN: 9783319038131

Download Shape Analysis in Medical Image Analysis Book in PDF, Epub and Kindle

This book contains thirteen contributions from invited experts of international recognition addressing important issues in shape analysis in medical image analysis, including techniques for image segmentation, registration, modelling and classification and applications in biology, as well as in cardiac, brain, spine, chest, lung and clinical practice. This volume treats topics such as for example, anatomic and functional shape representation and matching; shape-based medical image segmentation; shape registration; statistical shape analysis; shape deformation; shape-based abnormity detection; shape tracking and longitudinal shape analysis; machine learning for shape modeling and analysis; shape-based computer-aided-diagnosis; shape-based medical navigation; benchmark and validation of shape representation, analysis and modeling algorithms. This work will be of interest to researchers, students and manufacturers in the fields of artificial intelligence, bioengineering, biomechanics, computational mechanics, computational vision, computer sciences, human motion, mathematics, medical imaging, medicine, pattern recognition and physics.

3D Shape Analysis

3D Shape Analysis
Author: Hamid Laga,Yulan Guo,Hedi Tabia,Robert B. Fisher,Mohammed Bennamoun
Publsiher: John Wiley & Sons
Total Pages: 368
Release: 2019-01-07
Genre: Mathematics
ISBN: 9781119405108

Download 3D Shape Analysis Book in PDF, Epub and Kindle

An in-depth description of the state-of-the-art of 3D shape analysis techniques and their applications This book discusses the different topics that come under the title of "3D shape analysis". It covers the theoretical foundations and the major solutions that have been presented in the literature. It also establishes links between solutions proposed by different communities that studied 3D shape, such as mathematics and statistics, medical imaging, computer vision, and computer graphics. The first part of 3D Shape Analysis: Fundamentals, Theory, and Applications provides a review of the background concepts such as methods for the acquisition and representation of 3D geometries, and the fundamentals of geometry and topology. It specifically covers stereo matching, structured light, and intrinsic vs. extrinsic properties of shape. Parts 2 and 3 present a range of mathematical and algorithmic tools (which are used for e.g., global descriptors, keypoint detectors, local feature descriptors, and algorithms) that are commonly used for the detection, registration, recognition, classification, and retrieval of 3D objects. Both also place strong emphasis on recent techniques motivated by the spread of commodity devices for 3D acquisition. Part 4 demonstrates the use of these techniques in a selection of 3D shape analysis applications. It covers 3D face recognition, object recognition in 3D scenes, and 3D shape retrieval. It also discusses examples of semantic applications and cross domain 3D retrieval, i.e. how to retrieve 3D models using various types of modalities, e.g. sketches and/or images. The book concludes with a summary of the main ideas and discussions of the future trends. 3D Shape Analysis: Fundamentals, Theory, and Applications is an excellent reference for graduate students, researchers, and professionals in different fields of mathematics, computer science, and engineering. It is also ideal for courses in computer vision and computer graphics, as well as for those seeking 3D industrial/commercial solutions.

Elastic Shape Analysis of Three Dimensional Objects

Elastic Shape Analysis of Three Dimensional Objects
Author: Ian H. Jermyn,Sebastian Kurtek,Hamid Laga,Anuj Srivastava
Publsiher: Springer Nature
Total Pages: 169
Release: 2022-05-31
Genre: Computers
ISBN: 9783031018190

Download Elastic Shape Analysis of Three Dimensional Objects Book in PDF, Epub and Kindle

Statistical analysis of shapes of 3D objects is an important problem with a wide range of applications. This analysis is difficult for many reasons, including the fact that objects differ in both geometry and topology. In this manuscript, we narrow the problem by focusing on objects with fixed topology, say objects that are diffeomorphic to unit spheres, and develop tools for analyzing their geometries. The main challenges in this problem are to register points across objects and to perform analysis while being invariant to certain shape-preserving transformations. We develop a comprehensive framework for analyzing shapes of spherical objects, i.e., objects that are embeddings of a unit sphere in ℝ, including tools for: quantifying shape differences, optimally deforming shapes into each other, summarizing shape samples, extracting principal modes of shape variability, and modeling shape variability associated with populations. An important strength of this framework is that it is elastic: it performs alignment, registration, and comparison in a single unified framework, while being invariant to shape-preserving transformations. The approach is essentially Riemannian in the following sense. We specify natural mathematical representations of surfaces of interest, and impose Riemannian metrics that are invariant to the actions of the shape-preserving transformations. In particular, they are invariant to reparameterizations of surfaces. While these metrics are too complicated to allow broad usage in practical applications, we introduce a novel representation, termed square-root normal fields (SRNFs), that transform a particular invariant elastic metric into the standard L2 metric. As a result, one can use standard techniques from functional data analysis for registering, comparing, and summarizing shapes. Specifically, this results in: pairwise registration of surfaces; computation of geodesic paths encoding optimal deformations; computation of Karcher means and covariances under the shape metric; tangent Principal Component Analysis (PCA) and extraction of dominant modes of variability; and finally, modeling of shape variability using wrapped normal densities. These ideas are demonstrated using two case studies: the analysis of surfaces denoting human bodies in terms of shape and pose variability; and the clustering and classification of the shapes of subcortical brain structures for use in medical diagnosis. This book develops these ideas without assuming advanced knowledge in differential geometry and statistics. We summarize some basic tools from differential geometry in the appendices, and introduce additional concepts and terminology as needed in the individual chapters.