Soil Microbiome of the Cold Habitats

Soil Microbiome of the Cold Habitats
Author: Puja Gupta,Mohd. Shahnawaz
Publsiher: CRC Press
Total Pages: 267
Release: 2023-09-28
Genre: Medical
ISBN: 9781000933253

Download Soil Microbiome of the Cold Habitats Book in PDF, Epub and Kindle

This book focuses on cold habitat microbes as a potential source of elite enzymes and secondary metabolites to meet the growing demands of the pharmaceutical, food and biotechnological industries. Microbes living in such extremely cold conditions are reported to produce various biomolecules with potential biotechnological applications. The book overviews recent research trends to discover such important biomolecules and also suggests future research directions to discover such elite novel biomolecules. Salient features: Covers studies on various biotic communities and abiotic components of the soil of terrestrial habitats with a focus on cold habitats Discusses various 'Omic' approaches: metagenomics and meta-transcriptomics Lists adaptation strategies adopted by cold-adapted microbes Highlights various biotechnological and industrially important biomolecules produced by cold-adapted microbes Explores the role of microbial biofilm in the degradation of microplastics in cold habitats

Antarctic Terrestrial Microbiology

Antarctic Terrestrial Microbiology
Author: Don A. Cowan
Publsiher: Springer
Total Pages: 328
Release: 2014-07-08
Genre: Science
ISBN: 9783642452130

Download Antarctic Terrestrial Microbiology Book in PDF, Epub and Kindle

This book brings together many of the world’s leading experts in the fields of Antarctic terrestrial soil ecology, providing a comprehensive and completely up-to-date analysis of the status of Antarctic soil microbiology. Antarctic terrestrial soils represent one of the most extreme environments on Earth. Once thought to be largely sterile, it is now known that these diverse and often specialized extreme habitats harbor a very wide range of different microorganisms. Antarctic soil communities are relatively simple, but not unsophisticated. Recent phylogenetic and microscopic studies have demonstrated that these communities have well established trophic structuring and play a significant role in nutrient cycling in these cold and often dry desert ecosystems. They are surprisingly responsive to change and potentially sensitive to climatic perturbation. Antarctic terrestrial soils also harbor specialized ‘refuge’habitats, where microbial communities develop under (and within) translucent rocks. These cryptic habitats offer unique models for understanding the physical and biological ‘drivers’ of community development, function and evolution.

Microbiology of Extreme Soils

Microbiology of Extreme Soils
Author: Patrice Dion,Chandra Shekhar Nautiyal
Publsiher: Springer Science & Business Media
Total Pages: 369
Release: 2007-12-22
Genre: Science
ISBN: 9783540742319

Download Microbiology of Extreme Soils Book in PDF, Epub and Kindle

This volume provides a comprehensive coverage of the principal extreme soil ecosystems of natural and anthropogenic origin. Extreme soils oppose chemical or physical limits to colonization by most soil organisms and present the microbiologist with exciting opportunities. Described here are a range of fascinating environments from permafrost to Martian soils. The book includes chapters on basic research in addition to applications in biotechnology and bioremediation.

Microbial Life in the Cryosphere and Its Feedback on Global Change

Microbial Life in the Cryosphere and Its Feedback on Global Change
Author: Susanne Liebner,Lars Ganzert
Publsiher: Walter de Gruyter GmbH & Co KG
Total Pages: 323
Release: 2021-01-18
Genre: Science
ISBN: 9783110493900

Download Microbial Life in the Cryosphere and Its Feedback on Global Change Book in PDF, Epub and Kindle

The cryosphere stands for environments where water appears in a frozen form. It includes permafrost, glaciers, ice sheets, and sea ice and is currently more affected by Global Change than most other regions of the Earth. In the cryosphere, limited water availability and subzero temperatures cause extreme conditions for all kind of life which microorganisms can cope with extremely well. The cryosphere’s microbiota displays an unexpectedly large genetic potential, and taxonomic as well as functional diversity which, however, we still only begin to map. Also, microbial communities influence reaction patterns of the cryosphere towards Global Change. Altered patterns of seasonal temperature fluctuations and precipitation are expected in the Arctic and will affect the microbial turnover of soil organic matter (SOM). Activation of nutrients by thawing and increased active layer thickness as well as erosion renders nutrient stocks accessible to microbial activities. Also, glacier melt and retreat stimulate microbial life in turn influencing albedo and surface temperatures. In this context, the functional resilience of microbial communities in the cryosphere is of major interest. Particularly important is the ability of microorganisms and microbial communities to respond to changes in their surroundings by intracellular regulation and population shifts within functional niches, respectively. Research on microbial life exposed to permanent freeze or seasonal freeze-thaw cycles has led to astonishing findings about microbial versatility, adaptation, and diversity. Microorganisms thrive in cold habitats and new sequencing techniques have produced large amounts of genomic, metagenomic, and metatranscriptomic data that allow insights into the fascinating microbial ecology and physiology at low and subzero temperatures. Moreover, some of the frozen ecosystems such as permafrost constitute major global carbon and nitrogen storages, but can also act as sources of the greenhouse gases methane and nitrous oxide. In this book we summarize state of the art knowledge on whether environmental changes are met by a flexible microbial community retaining its function, or if the altered conditions also render the community in a state of altered properties that affect the Earth’s element cycles and climate. This book brings together research on the cryosphere’s microbiota including permafrost, glaciers, and sea ice in Arctic and Antarctic regions. Different spatial scales and levels of complexity are considered, spanning from ecosystem level to pure culture studies of model microbes in the laboratory. It aims to attract a wide range of parties with interest in the effect of climate change and/or low temperatures on microbial nutrient cycling and physiology.

Soil Microbiomes for Sustainable Agriculture

Soil Microbiomes for Sustainable Agriculture
Author: Ajar Nath Yadav
Publsiher: Springer Nature
Total Pages: 634
Release: 2021-06-28
Genre: Science
ISBN: 9783030735074

Download Soil Microbiomes for Sustainable Agriculture Book in PDF, Epub and Kindle

This book encompasses current knowledge of soil microbiomes and their potential biotechnological application for plant growth, crop yield, and soil health under the natural as well as harsh environmental conditions for sustainable agriculture. The microbes are ubiquitous in nature. The soil is a natural hotspot of the soil microbiome. The soil microbiome plays a critical role in the maintenance of global nutrient balance and ecosystem functioning. The soil microbiomes are associated with plant ecosystems through the intense network of plant–microbe interactions. The microbes present in bulk soil move toward the rhizospheric region due to the release of different nutrients by plant systems. The rhizospheric microbes may survive or proliferate in rhizospheric zone depending on the extent of influences of the chemicals secreted into the soil by roots. The root exudates contain the principal nutrients factors (amino acids, glucose, fructose, and sucrose). The microbes present in rhizospheric region have capabilities to fix atmospheric nitrogen, produce different phytohormones, and solubilize phosphorus, potassium, and zinc. The plant systems take these nutrients for their growth and developments. These soil and plant associated microbes also play an important role in protection of plants from different plant pathogenic organisms by producing different secondary metabolites such as ammonia, hydrogen cyanide, siderophores, and hydrolytic enzymes. The soil microbiomes with plant growth-promoting (PGP) attributes have emerged as an important and promising tool for sustainable agriculture. The soil microbiomes promote the plant growth and enhance the crop yield and soil fertility via directly or indirectly different plant growth-promoting mechanism. The soil microbes help the plant for adaptation in extreme habitats by mitigating the abiotic stress of high/low temperatures, hypersalinity, drought, and acidic/alkaline soil. These PGP microbes are used as biofertilizers/bioinoculants to replace the harmful chemical fertilizers for sustainable agriculture and environments. The aim of the book “Soil Microbiomes for Sustainable Agriculture” is to provide the recent advances in mechanisms of plant growth promotion and applications of soil microbiomes for mitigation of different abiotic stresses in plants. The book is useful to scientists, researchers, and students related to microbiology, biotechnology, agriculture, molecular biology, environmental biology, and related subjects.

Microbial Ecology of Extreme Environments

Microbial Ecology of Extreme Environments
Author: Caroline Chénard,Federico M. Lauro
Publsiher: Springer
Total Pages: 245
Release: 2017-03-15
Genre: Science
ISBN: 9783319516868

Download Microbial Ecology of Extreme Environments Book in PDF, Epub and Kindle

This book explores microbial lifestyles, biochemical adaptations, and trophic interactions occurring in extreme environments. By summarizing the latest findings in the field it provides a valuable reference for future studies. Spark ideas for biotechnological and commercial exploitation of microbiomes at the extremes of life are presented. Chapters on viruses complement this highly informative book. In a vertical journey through the microbial biosphere it covers aspects of cold environments, hot environments, extreme saline environments, and extreme pressure environments, and more. From the deep sea, through polar deserts, up to the clouds in the air - the diversity of microbial life in all habitats is described, explored, and comprehensively reviewed. Possible biotechnical applications are discussed. This book aims to provide a useful reference for those who want to start a research program in extreme microbiology and, hopefully, inspire new research directions.

Microbial Communities of Polar and Alpine Soils

Microbial Communities of Polar and Alpine Soils
Author: Laura Zucconi,Pietro Buzzini
Publsiher: Frontiers Media SA
Total Pages: 187
Release: 2021-11-10
Genre: Science
ISBN: 9782889716180

Download Microbial Communities of Polar and Alpine Soils Book in PDF, Epub and Kindle

Climate Change and the Microbiome

Climate Change and the Microbiome
Author: D. K. Choudhary,Arti Mishra,Ajit Varma
Publsiher: Springer Nature
Total Pages: 737
Release: 2021-10-13
Genre: Science
ISBN: 9783030768638

Download Climate Change and the Microbiome Book in PDF, Epub and Kindle

This book highlights the impact of climate change on the soil microbiome and its subsequent effects on plant health, soil-plant dynamics, and the ecosphere. It also discusses emerging ideas to counteract these effects, e.g., through agricultural applications of functional microbes, to ensure a sustainable ecosystem. Climate change is altering the soil microbiome distributions and thus the interactions in microbiome and plant‐soil microorganism. Improvement of our understanding of microbe-microbe and plant-microbe interaction under changing climatic conditions is essential, because the overall impact of these interactions under varying adverse environmental conditions is lacking. This book has been designed to understand the impact of climate change, i.e., mainly salt and drought stress, on the soil microbiome and its impact on plant, yield, and the ecosphere. The book is organized into four parts: The first part reviews the impact of climate change on the diversity and richness of the soil microbiome. The second part addresses effects of climate change on plant health. The third part discusses effects on soil-plant dynamics and functionality, e.g., soil productivity. The final part deals with the effects of climate change on ecosystem functioning and also discusses potential solutions. The book will appeal to students and researchers working in the area of soil science, agriculture, molecular biology, plant physiology, and biotechnology.