Stochastic Models Statistics and Their Applications

Stochastic Models  Statistics and Their Applications
Author: Ansgar Steland,Ewaryst Rafajłowicz,Krzysztof Szajowski
Publsiher: Springer
Total Pages: 492
Release: 2015-02-04
Genre: Mathematics
ISBN: 9783319138817

Download Stochastic Models Statistics and Their Applications Book in PDF, Epub and Kindle

This volume presents the latest advances and trends in stochastic models and related statistical procedures. Selected peer-reviewed contributions focus on statistical inference, quality control, change-point analysis and detection, empirical processes, time series analysis, survival analysis and reliability, statistics for stochastic processes, big data in technology and the sciences, statistical genetics, experiment design, and stochastic models in engineering. Stochastic models and related statistical procedures play an important part in furthering our understanding of the challenging problems currently arising in areas of application such as the natural sciences, information technology, engineering, image analysis, genetics, energy and finance, to name but a few. This collection arises from the 12th Workshop on Stochastic Models, Statistics and Their Applications, Wroclaw, Poland.

Stochastic Models Analysis and Applications

Stochastic Models  Analysis and Applications
Author: B. R. Bhat
Publsiher: New Age International
Total Pages: 412
Release: 2004
Genre: Mathematical statistics
ISBN: 8122412289

Download Stochastic Models Analysis and Applications Book in PDF, Epub and Kindle

The Book Presents A Systematic Exposition Of The Basic Theory And Applications Of Stochastic Models.Emphasising The Modelling Rather Than Mathematical Aspects Of Stochastic Processes, The Book Bridges The Gap Between The Theory And Applications Of These Processes.The Basic Building Blocks Of Model Construction Are Explained In A Step By Step Manner, Starting From The Simplest Model Of Random Walk And Proceeding Gradually To More Complicated Models. Several Examples Are Given Throughout The Text To Illustrate Important Analytical Properties As Well As To Provide Applications.The Book Also Includes A Detailed Chapter On Inference For Stochastic Processes. This Chapter Highlights Some Of The Recent Developments In The Subject And Explains Them Through Illustrative Examples.An Important Feature Of The Book Is The Complements And Problems Section At The End Of Each Chapter Which Presents (I) Additional Properties Of The Model, (Ii) Extensions Of The Model, And (Iii) Applications Of The Model To Different Areas.With All These Features, This Is An Invaluable Text For Post-Graduate Students Of Statistics, Mathematics And Operation Research.

Stochastic Models Statistics and Their Applications

Stochastic Models  Statistics and Their Applications
Author: Ansgar Steland,Ewaryst Rafajłowicz,Ostap Okhrin
Publsiher: Springer Nature
Total Pages: 450
Release: 2019-10-15
Genre: Mathematics
ISBN: 9783030286651

Download Stochastic Models Statistics and Their Applications Book in PDF, Epub and Kindle

This volume presents selected and peer-reviewed contributions from the 14th Workshop on Stochastic Models, Statistics and Their Applications, held in Dresden, Germany, on March 6-8, 2019. Addressing the needs of theoretical and applied researchers alike, the contributions provide an overview of the latest advances and trends in the areas of mathematical statistics and applied probability, and their applications to high-dimensional statistics, econometrics and time series analysis, statistics for stochastic processes, statistical machine learning, big data and data science, random matrix theory, quality control, change-point analysis and detection, finance, copulas, survival analysis and reliability, sequential experiments, empirical processes, and microsimulations. As the book demonstrates, stochastic models and related statistical procedures and algorithms are essential to more comprehensively understanding and solving present-day problems arising in e.g. the natural sciences, machine learning, data science, engineering, image analysis, genetics, econometrics and finance.

Statistical Topics and Stochastic Models for Dependent Data with Applications

Statistical Topics and Stochastic Models for Dependent Data with Applications
Author: Vlad Stefan Barbu,Nicolas Vergne
Publsiher: John Wiley & Sons
Total Pages: 288
Release: 2020-12-03
Genre: Mathematics
ISBN: 9781786306036

Download Statistical Topics and Stochastic Models for Dependent Data with Applications Book in PDF, Epub and Kindle

This book is a collective volume authored by leading scientists in the field of stochastic modelling, associated statistical topics and corresponding applications. The main classes of stochastic processes for dependent data investigated throughout this book are Markov, semi-Markov, autoregressive and piecewise deterministic Markov models. The material is divided into three parts corresponding to: (i) Markov and semi-Markov processes, (ii) autoregressive processes and (iii) techniques based on divergence measures and entropies. A special attention is payed to applications in reliability, survival analysis and related fields.

Stochastic Models Statistics and Their Applications

Stochastic Models  Statistics and Their Applications
Author: Anonim
Publsiher: Unknown
Total Pages: 449
Release: 2019
Genre: Stochastic processes
ISBN: 3030286665

Download Stochastic Models Statistics and Their Applications Book in PDF, Epub and Kindle

This volume presents selected and peer-reviewed contributions from the 14th Workshop on Stochastic Models, Statistics and Their Applications, held in Dresden, Germany, on March 6-8, 2019. Addressing the needs of theoretical and applied researchers alike, the contributions provide an overview of the latest advances and trends in the areas of mathematical statistics and applied probability, and their applications to high-dimensional statistics, econometrics and time series analysis, statistics for stochastic processes, statistical machine learning, big data and data science, random matrix theory, quality control, change-point analysis and detection, finance, copulas, survival analysis and reliability, sequential experiments, empirical processes, and microsimulations. As the book demonstrates, stochastic models and related statistical procedures and algorithms are essential to more comprehensively understanding and solving present-day problems arising in e.g. the natural sciences, machine learning, data science, engineering, image analysis, genetics, econometrics and finance.

Stochastic Models Statistics and Their Applications

Stochastic Models  Statistics and Their Applications
Author: Ansgar Steland,Ewaryst Rafajłowicz,Krzysztof Szajowski
Publsiher: Unknown
Total Pages: 135
Release: 2015
Genre: Electronic Book
ISBN: 3319138820

Download Stochastic Models Statistics and Their Applications Book in PDF, Epub and Kindle

This volume presents the latest advances and trends in stochastic models and related statistical procedures. Selected peer-reviewed contributions focus on statistical inference, quality control, change-point analysis and detection, empirical processes, time series analysis, survival analysis and reliability, statistics for stochastic processes, big data in technology and the sciences, statistical genetics, experiment design, and stochastic models in engineering. Stochastic models and related statistical procedures play an important part in furthering our understanding of the challenging problems currently arising in areas of application such as the natural sciences, information technology, engineering, image analysis, genetics, energy and finance, to name but a few. This collection arises from the 12th Workshop on Stochastic Models, Statistics and Their Applications, Wroclaw, Poland.

Stochastic Modelling of Social Processes

Stochastic Modelling of Social Processes
Author: Andreas Diekmann,Peter Mitter
Publsiher: Academic Press
Total Pages: 352
Release: 2014-05-10
Genre: Social Science
ISBN: 9781483266565

Download Stochastic Modelling of Social Processes Book in PDF, Epub and Kindle

Stochastic Modelling of Social Processes provides information pertinent to the development in the field of stochastic modeling and its applications in the social sciences. This book demonstrates that stochastic models can fulfill the goals of explanation and prediction. Organized into nine chapters, this book begins with an overview of stochastic models that fulfill normative, predictive, and structural–analytic roles with the aid of the theory of probability. This text then examines the study of labor market structures using analysis of job and career mobility, which is one of the approaches taken by sociologists in research on the labor market. Other chapters consider the characteristic trends and patterns from data on divorces. This book discusses as well the two approaches of stochastic modeling of social processes, namely competing risk models and semi-Markov processes. The final chapter deals with the practical application of regression models of survival data. This book is a valuable resource for social scientists and statisticians.

An Introduction to Stochastic Modeling

An Introduction to Stochastic Modeling
Author: Howard M. Taylor,Samuel Karlin
Publsiher: Academic Press
Total Pages: 410
Release: 2014-05-10
Genre: Mathematics
ISBN: 9781483269276

Download An Introduction to Stochastic Modeling Book in PDF, Epub and Kindle

An Introduction to Stochastic Modeling provides information pertinent to the standard concepts and methods of stochastic modeling. This book presents the rich diversity of applications of stochastic processes in the sciences. Organized into nine chapters, this book begins with an overview of diverse types of stochastic models, which predicts a set of possible outcomes weighed by their likelihoods or probabilities. This text then provides exercises in the applications of simple stochastic analysis to appropriate problems. Other chapters consider the study of general functions of independent, identically distributed, nonnegative random variables representing the successive intervals between renewals. This book discusses as well the numerous examples of Markov branching processes that arise naturally in various scientific disciplines. The final chapter deals with queueing models, which aid the design process by predicting system performance. This book is a valuable resource for students of engineering and management science. Engineers will also find this book useful.