Topics in the Mathematical Modelling of Composite Materials

Topics in the Mathematical Modelling of Composite Materials
Author: Andrej V. Cherkaev,Robert Kohn
Publsiher: Springer
Total Pages: 317
Release: 2018-09-18
Genre: Mathematics
ISBN: 9783319971841

Download Topics in the Mathematical Modelling of Composite Materials Book in PDF, Epub and Kindle

Over the past several decades, we have witnessed a renaissance of theoretical work on the macroscopic behavior of microscopically heterogeneous materials. This activity brings together a number of related themes, including: (1) the use of weak convergence as a rigorous yet general language for the discussion of macroscopic behavior; (2) interest in new types of questions, particularly the "G-closure problem," motivated in large part by applications of optimal control theory to structural optimization; (3) the introduction of new methods for bounding effective moduli, including one based on "compensated compactness"; and (4) the identification of deep links between the analysis of microstructures and the multidimensional calculus of variations. This work has implications for many physical problems involving optimal design, composite materials, and coherent phase transitions. As a result, it has received attention and support from numerous scientific communities, including engineering, materials science, and physics, as well as mathematics. There is by now an extensive literature in this area. But for various reasons certain fundamental papers were never properly published, circulating instead as mimeographed notes or preprints. Other work appeared in poorly distributed conference proceedings volumes. Still other work was published in standard books or journals, but written in Russian or French. The net effect is a sort of "gap" in the literature, which has made the subject unnecessarily difficult for newcomers to penetrate. The present, softcover reprint is designed to make this classic text available to a wider audience. "Summarizes some of the fundamental results achieved and offers new perspectives in the mechanics of composite and micromechanics... Will become a classic in the two fields." —Applied Mechanics Review

Topics in the Mathematical Modelling of Composite Materials

Topics in the Mathematical Modelling of Composite Materials
Author: Andrej V. Čerkaev
Publsiher: Unknown
Total Pages: 317
Release: 1997-01-01
Genre: Composite materials
ISBN: 3764336625

Download Topics in the Mathematical Modelling of Composite Materials Book in PDF, Epub and Kindle

Advances in Mathematical Modelling of Composite Materials

Advances in Mathematical Modelling of Composite Materials
Author: Konstantin Z. Markov
Publsiher: World Scientific
Total Pages: 312
Release: 1994
Genre: Technology & Engineering
ISBN: 9810216440

Download Advances in Mathematical Modelling of Composite Materials Book in PDF, Epub and Kindle

This volume contains papers of leading experts in the modern continuum theory of composite materials. The papers expose in detail the newest ideas, approaches, results and perspectives in this broadly interdisciplinary field ranging from pure and applied mathematics, mechanics, physics and materials science. The emphasis is on mathematical modelling and model analysis of the mechanical behaviour and strength of composites, including methods of predicting effective macroscopic properties (dielectric, elastic, nonlinear, inelastic, plastic and thermoplastic) from known microstructures.

Mathematical Methods And Models In Composites

Mathematical Methods And Models In Composites
Author: Vladislav Mantic
Publsiher: World Scientific
Total Pages: 520
Release: 2013-10-25
Genre: Technology & Engineering
ISBN: 9781783264117

Download Mathematical Methods And Models In Composites Book in PDF, Epub and Kindle

This book provides a representative selection of the most relevant, innovative, and useful mathematical methods and models applied to the analysis and characterization of composites and their behaviour on micro-, meso-, and macroscale. It establishes the fundamentals for meaningful and accurate theoretical and computer modelling of these materials in the future. Although the book is primarily concerned with fibre-reinforced composites, which have ever-increasing applications in fields such as aerospace, many of the results presented can be applied to other kinds of composites. The topics covered include: scaling and homogenization procedures in composite structures, thin plate and wave solutions in anisotropic materials, laminated structures, instabilities, fracture and damage analysis of composites, and highly efficient methods for simulation of composites manufacturing. The results presented are useful in the design, fabrication, testing, and industrial applications of composite components and structures. The book is written by well-known experts in different areas of applied mathematics, physics, and composite engineering and is an essential source of reference for graduate and doctoral students, as well as researchers. It is also suitable for non-experts in composites who wish to have an overview of both the mathematical methods and models used in this area and the related open problems requiring further research.

Multi scale Simulation of Composite Materials

Multi scale Simulation of Composite Materials
Author: Stefan Diebels,Sergej Rjasanow
Publsiher: Springer
Total Pages: 178
Release: 2019-02-01
Genre: Science
ISBN: 9783662579572

Download Multi scale Simulation of Composite Materials Book in PDF, Epub and Kindle

Due to their high stiffness and strength and their good processing properties short fibre reinforced thermoplastics are well-established construction materials. Up to now, simulation of engineering parts consisting of short fibre reinforced thermoplastics has often been based on macroscopic phenomenological models, but deformations, damage and failure of composite materials strongly depend on their microstructure. The typical modes of failure of short fibre thermoplastics enriched with glass fibres are matrix failure, rupture of fibres and delamination, and pure macroscopic consideration is not sufficient to predict those effects. The typical predictive phenomenological models are complex and only available for very special failures. A quantitative prediction on how failure will change depending on the content and orientation of the fibres is generally not possible, and the direct involvement of the above effects in a numerical simulation requires multi-scale modelling. One the one hand, this makes it possible to take into account the properties of the matrix material and the fibre material, the microstructure of the composite in terms of fibre content, fibre orientation and shape as well as the properties of the interface between fibres and matrix. On the other hand, the multi-scale approach links these local properties to the global behaviour and forms the basis for the dimensioning and design of engineering components. Furthermore, multi-scale numerical simulations are required to allow efficient solution of the models when investigating three-dimensional problems of dimensioning engineering parts. Bringing together mathematical modelling, materials mechanics, numerical methods and experimental engineering, this book provides a unique overview of multi-scale modelling approaches, multi-scale simulations and experimental investigations of short fibre reinforced thermoplastics. The first chapters focus on two principal subjects: the mathematical and mechanical models governing composite properties and damage description. The subsequent chapters present numerical algorithms based on the Finite Element Method and the Boundary Element Method, both of which make explicit use of the composite’s microstructure. Further, the results of the numerical simulations are shown and compared to experimental results. Lastly, the book investigates deformation and failure of composite materials experimentally, explaining the applied methods and presenting the results for different volume fractions of fibres. This book is a valuable resource for applied mathematics, theoretical and experimental mechanical engineers as well as engineers in industry dealing with modelling and simulation of short fibre reinforced composites.

Numerical Analysis and Modelling of Composite Materials

Numerical Analysis and Modelling of Composite Materials
Author: J.W. Bull
Publsiher: Springer Science & Business Media
Total Pages: 457
Release: 2012-12-06
Genre: Technology & Engineering
ISBN: 9789401106030

Download Numerical Analysis and Modelling of Composite Materials Book in PDF, Epub and Kindle

Composite materials are increasingly used in many applications because they offer the engineer a range of advantages over traditional materials. They are often used in situations where a specified level of performance is required, but where the cost of testing the materials under the extremes of those specifications is very high. In order to solve this problem, engineers are turning to computer Modelling to evaluate the materials under the range of conditions they are likely to encounter. Many of these analyses are carried out in isolation, and yet the evaluation of a range of composites can be carried out using the same basic principles. In this new book the editor has brought together an international panel of authors, each of whom is working on the analysis and Modelling of composite materials. The overage of the book is deliberately wide; to illustrate that similar principles and methods can be used to model and evaluate a wide range of materials. It is also hoped that, by bringing together this range of topics, the insight gained in the study of one composite can be recognized and utilized in the study of others. Professional engineers involved in the specification and testing of composite material structures will find this book an invaluable resource in the course of their work. It will also be of interest to those industrial and academic engineers involved in the design, development, manufacture and applications of composite materials.

Multiscale Modeling and Simulation of Composite Materials and Structures

Multiscale Modeling and Simulation of Composite Materials and Structures
Author: Young Kwon,David H. Allen,Ramesh R. Talreja
Publsiher: Springer Science & Business Media
Total Pages: 634
Release: 2007-12-04
Genre: Technology & Engineering
ISBN: 9780387363189

Download Multiscale Modeling and Simulation of Composite Materials and Structures Book in PDF, Epub and Kindle

This book presents the state-of-the-art in multiscale modeling and simulation techniques for composite materials and structures. It focuses on the structural and functional properties of engineering composites and the sustainable high performance of components and structures. The multiscale techniques can be also applied to nanocomposites which are important application areas in nanotechnology. There are few books available on this topic.

Mathematical Methods And Models In Composites Second Edition

Mathematical Methods And Models In Composites  Second Edition
Author: Vladislav Mantic
Publsiher: World Scientific
Total Pages: 731
Release: 2023-03-10
Genre: Mathematics
ISBN: 9781800611894

Download Mathematical Methods And Models In Composites Second Edition Book in PDF, Epub and Kindle

Mathematical Methods and Models in Composites (Second Edition) provides an in-depth treatment of modern and rigorous mathematical methods and models applied to composites modeling on the micro-, meso-, and macro scale. There has been a steady growth in the diversity of such methods and models that are used in the analysis and characterization of composites, their behavior, and their associated phenomena and processes. This second edition expands upon the success of the first edition, and has been substantially revised and updated.Written by well-known experts in different areas of applied mathematics, physics, and composite engineering, this book is mainly focused on continuous fiber reinforced composites and their ever increasing range of applications (for example, in the aerospace industry), though it also covers other kind of composites. The chapters cover a range of topics including, but not limited to: scaling and homogenization procedures in composites, thin plate and wave solutions in anisotropic materials, laminated structures, fiber-reinforced nonlinearly elastic solids, buckling and postbuckling, fracture and damage analysis of composites, and highly efficient methods for simulation of composites manufacturing such as resin transfer molding. The results presented are useful for the design, fabrication, testing and industrial applications of composite components and structures.This book is an essential reference for graduate and doctoral students, as well as researchers in mathematics, physics and composite engineering. Explanations and references in the book are sufficiently detailed so as to provide the necessary background to further investigate the fascinating subject of composites modeling and explore relevant research literature. It is also suitable for non-experts who wish to have an overview of the mathematical methods and models used for composites, and of the open problems in this area that require further research.