Integration of High Voltage AC DC Grids into Modern Power Systems

Integration of High Voltage AC DC Grids into Modern Power Systems
Author: Fazel Mohammadi
Publsiher: MDPI
Total Pages: 140
Release: 2020-12-10
Genre: Technology & Engineering
ISBN: 9783039365258

Download Integration of High Voltage AC DC Grids into Modern Power Systems Book in PDF, Epub and Kindle

Electric power transmission relies on AC and DC grids. The extensive integration of conventional and nonconventional energy sources and power converters into power grids has resulted in a demand for high voltage (HV), extra-high voltage (EHV), and ultra-high voltage (UHV) AC/DC transmission grids in modern power systems. To ensure the security, adequacy, and reliable operation of power systems, the practical aspects of interconnecting HV, EHV, and UHV AC/DC grids into the electric power systems, along with their economic and environmental impacts, should be considered. The stability analysis for the planning and operation of HV, EHV, and UHV AC/DC grids in power systems is regarded as another key issue in modern power systems. Moreover, interactions between power converters and other power electronics devices (e.g., FACTS devices) installed on the network are other aspects of power systems that must be addressed. This Special Issue aims to investigate the integration of HV, EHV, and UHV AC/DC grids into modern power systems by analyzing their control, operation, protection, dynamics, planning, reliability, and security, along with considering power quality improvement, market operations, power conversion, cybersecurity, supervisory and monitoring, diagnostics, and prognostics systems.

Integration of High Voltage AC DC Grids Into Modern Power Systems

Integration of High Voltage AC DC Grids Into Modern Power Systems
Author: Fazel Mohammadi
Publsiher: Unknown
Total Pages: 140
Release: 2020
Genre: Electronic Book
ISBN: 3039365266

Download Integration of High Voltage AC DC Grids Into Modern Power Systems Book in PDF, Epub and Kindle

Electric power transmission relies on AC and DC grids. The extensive integration of conventional and nonconventional energy sources and power converters into power grids has resulted in a demand for high voltage (HV), extra-high voltage (EHV), and ultra-high voltage (UHV) AC/DC transmission grids in modern power systems. To ensure the security, adequacy, and reliable operation of power systems, the practical aspects of interconnecting HV, EHV, and UHV AC/DC grids into the electric power systems, along with their economic and environmental impacts, should be considered. The stability analysis for the planning and operation of HV, EHV, and UHV AC/DC grids in power systems is regarded as another key issue in modern power systems. Moreover, interactions between power converters and other power electronics devices (e.g., FACTS devices) installed on the network are other aspects of power systems that must be addressed. This Special Issue aims to investigate the integration of HV, EHV, and UHV AC/DC grids into modern power systems by analyzing their control, operation, protection, dynamics, planning, reliability, and security, along with considering power quality improvement, market operations, power conversion, cybersecurity, supervisory and monitoring, diagnostics, and prognostics systems.

Integration of AC DC Microgrids into Power Grids

Integration of AC DC Microgrids into Power Grids
Author: Fazel Mohammadi
Publsiher: MDPI
Total Pages: 154
Release: 2020-12-02
Genre: Technology & Engineering
ISBN: 9783039361809

Download Integration of AC DC Microgrids into Power Grids Book in PDF, Epub and Kindle

AC/DC Microgrids are a small part of low voltage distribution networks that are located far from power substations, and are interconnected through the point of common coupling to power grids. These systems are important keys for the flexible, techno-economic, and environmental-friendly generation of units for the reliable operation and cost-effective planning of smart electricity grids. Although AC/DC microgrids, with the integration of renewable energy resources and other energy systems, such as power-to-gas, combined heat and power, combined cooling heat and power, power-to-heat, power-to-vehicle, pump and compressed air storage, have several advantages, there are some technical aspects that must be addressed. This Special Issue aims to study the configuration, impacts, and prospects of AC/DC microgrids that enable enhanced solutions for intelligent and optimized electricity systems, energy storage systems, and demand-side management in power grids with an increasing share of distributed energy resources. It includes AC/DC microgrid modeling, simulation, control, operation, protection, dynamics, planning, reliability and security, as well as considering power quality improvement, load forecasting, market operations, energy conversion, cyber/physical security, supervisory and monitoring, diagnostics and prognostics systems.

Ultra High Voltage AC DC Grids

Ultra High Voltage AC DC Grids
Author: Zhenya Liu
Publsiher: Academic Press
Total Pages: 758
Release: 2014-12-11
Genre: Technology & Engineering
ISBN: 9780128023600

Download Ultra High Voltage AC DC Grids Book in PDF, Epub and Kindle

The UHV transmission has many advantages for new power networks due to its capacity, long distance potential, high efficiency, and low loss. Development of UHV transmission technology is led by infrastructure development and renewal, as well as smart grid developments, which can use UHV power networks as the transmission backbone for hydropower, coal, nuclear power and large renewable energy bases. Over the years, State Grid Corporation of China has developed a leading position in UHV core technology R&D, equipment development, plus construction experience, standards development and operational management. SGCC built the most advanced technology 'two AC and two DC' UHV projects with the highest voltage-class and largest transmission capacity in the world, with a cumulative power transmission of 10TWh. This book comprehensively summarizes the research achievement, theoretical innovation and engineering practice in UHV power grid construction in China since 2005. It covers the key technology and parameters used in the design of the UHV transmission network, shows readers the technical problems State Grid encountered during the construction, and the solution they come up with. It also introduces key technology like UHV series compensation, DC converter valve, and the systematic standards and norms. Discusses technical characteristics and advantages of using of AC/DC transmission system Includes applications and technical standards of UHV technologies Provides insight and case studies into a technology area that is developing worldwide Introduces the technical difficulties encountered in design and construction phase and provides solutions

Medium Voltage Direct Current Grid

Medium Voltage Direct Current Grid
Author: M. M. Eissa
Publsiher: Academic Press
Total Pages: 232
Release: 2019-05-03
Genre: Science
ISBN: 9780128145616

Download Medium Voltage Direct Current Grid Book in PDF, Epub and Kindle

Medium Voltage Direct Current Grid is the first comprehensive reference to provide advanced methods and best practices with case studies to Medium Voltage Direct Current Grid (MVDC) for Resilience Operation, Protection and Control. It also provides technical details to tackle emerging challenges, and discuss knowledge and best practices about Modeling and Operation, Energy management of MVDC grid, MVDC Grid Protection, Power quality management of MVDC grid, Power quality analysis and control methods, AC/DC, DC/DC modular power converter, Renewable energy applications and Energy storage technologies. In addition, includes support to end users to integrate their systems to smart grid. Covers advanced methods and global case studies for reference Provides technical details and best practices for the individual modeling and operation of MVDC systems Includes guidance to tackle emerging challenges and support users in integrating their systems to smart grids

Emerging Power Converters for Renewable Energy and Electric Vehicles

Emerging Power Converters for Renewable Energy and Electric Vehicles
Author: Md. Rabiul Islam,Md. Rakibuzzaman Shah,Mohd. Hasan Ali
Publsiher: CRC Press
Total Pages: 419
Release: 2021-05-30
Genre: Technology & Engineering
ISBN: 9781000374094

Download Emerging Power Converters for Renewable Energy and Electric Vehicles Book in PDF, Epub and Kindle

This book covers advancements of power electronic converters and their control techniques for grid integration of large-scale renewable energy sources and electrical vehicles. Major emphasis is on transformer-less direct grid integration, bidirectional power transfer, compensation of grid power quality issues, DC system protection and grounding, interaction in mixed AC/DC systems, AC and DC system stability, design of high-frequency high power density systems with advanced soft magnetic materials, modeling and simulation of mixed AC/DC systems, switching strategies for enhanced efficiency, and protection and reliability for sustainable grid integration. This book is an invaluable resource for professionals active in the field of renewable energy and power conversion. Md. Rabiul Islam received his PhD from the University of Technology Sydney (UTS), Australia. He was appointed as a Lecturer at Rajshahi University of Engineering & Technology (RUET) in 2005 and promoted to full-term Professor in 2017. In early 2018, he joined the School of Electrical, Computer, and Telecommunications Engineering, University of Wollongong, Australia. He is a Senior Member of IEEE. His research interests include the fields of power electronic converters, renewable energy technologies, power quality, electrical machines, electric vehicles, and smart grids. He has authored or coauthored more than 200 publications including 50 IEEE Transactions/IEEE Journal papers. He has been serving as an editor for IEEE Transactions on Energy Conversion and IEEE Power Engineering Letters, and associate editor for IEEE Access. Md. Rakibuzzaman Shah is a Senior Lecturer with the School of Engineering, Information Technology and Physical Science at Federation University Australia. He has worked and consulted with distribution network operators and transmission system operators on individual projects and has done collaborative work on a large number of projects (EPSRC project on multi-terminal HVDC, Scottish and Southern Energy multi-infeed HVDC) - primarily on the dynamic impact of integrating new technologies and power electronics into large systems. He is an active member of the IEEE and CIGRE. He has more than 70 international publications and has spoken at the leading power system conferences around the world. His research interests include future power grids (i.e., renewable energy integration, wide-area control), asynchronous grid connection through VSC-HVDC, application of data mining in power system, distribution system energy management, and low carbon energy systems. Mohd. Hasan Ali is currently an Associate Professor with the Electrical and Computer Engineering Department at the University of Memphis, USA, where he leads the Electric Power and Energy Systems (EPES) Laboratory. His research interests include advanced power systems, smart-grid and microgrid systems, renewable energy systems, and cybersecurity issues in modern power grids. Dr. Ali has more than 190 publications, including 2 books, 4 book chapters, 2 patents, 60 top ranked journal papers, 96 peer-reviewed international conference papers, and 20 national conference papers. He serves as the editor of the IEEE Transactions on Sustainable Energy and IET-Generation, Transmission and Distribution (GTD) journal. Dr. Ali is a Senior Member of the IEEE Power and Energy Society (PES). He is also the Chair of the PES of the IEEE Memphis Section.

HVDC FACTS for Grid Services in Electric Power Systems

HVDC FACTS for Grid Services in Electric Power Systems
Author: José M. Maza-Ortega,Antonio Gómez-Expósito
Publsiher: MDPI
Total Pages: 276
Release: 2020-11-23
Genre: Technology & Engineering
ISBN: 9783039283767

Download HVDC FACTS for Grid Services in Electric Power Systems Book in PDF, Epub and Kindle

Electric power systems are headed for a true changing of the guard, due to the urgent need for achieving sustainable energy delivery. Fortunately, the development of new technologies is driving the transition of power systems toward a carbon-free paradigm while maintaining the current standards of quality, efficiency, and resilience. The introduction of HVDC and FACTS in the 20th century, taking advantage of dramatic improvements in power electronics and control, gave rise to unprecedented levels of flexibility and speed of response in comparison with traditional electromechanical devices. This flexibility is nowadays required more than ever in order to solve a puzzle with pieces that do not always fit perfectly. This Special Issue aims to address the role that FACTS and HVDC systems can play in helping electric power systems face the challenges of the near future.

DC Technology in Utility Grids

DC Technology in Utility Grids
Author: Sedigheh Rabiee,Marco Cupelli,Mohsen Ferdowsi,Hanno Stagge,Matthias Heidemann,Robert Möller
Publsiher: BoD – Books on Demand
Total Pages: 401
Release: 2021-12-17
Genre: Technology & Engineering
ISBN: 9783946143093

Download DC Technology in Utility Grids Book in PDF, Epub and Kindle

The assembly of this study started in 2013 during the preparation of the foundation of the Flexible Electrical Networks (FEN) Research Campus, an institution supported by the German Federal Ministry of Education and Science, concentrating on DC technology in power grids as an enabler for the energy transition. It reflects the state-of-the-art and research needs of DC technology against the background of application in public grids up until the year 2015. Topics as components, control, management and automation, high-, medium, and low-voltage grid concepts as well as social dimensions, economics, and impact on living beings are considered. After substantial editorial effort, its first public edition has become ready now. The aim of FEN is to investigate and to develop flexible power grids. Such grid will safeguard the future energy supply with a high share of fluctuating and decentralized renewable energy sources. At the same time, these grids will enable a reliable and affordable energy supply in the future. The objective is to provide new technologies and concepts for the security and quality of the energy supply in the transmission and distribution grids. To pursue this goal, the use of direct-current (DC) technology, based on power electronics, automation and communication technologies, plays an important role. Although DC technology is not yet established as a standard technology in the public electrical power supply system, its high potential has been widely recognized. The use of DC is an enabler to make the future energy supply system more economical than a system based on alternating-current (AC), because of its superior properties in handling distributed and fluctuation power generation. Indeed, DC connections are already the most cost-efficient solution in cases of very high-power long-distance point-to-point transmission of electricity or via submarine cables. The objective of the FEN Research Campus is now to achieve and demonstrate feasibility of DC as a standard solution for future electrical grids, as described in this study.