Mathematical Neuroscience

Mathematical Neuroscience
Author: Stanislaw Brzychczy,Roman R. Poznanski
Publsiher: Academic Press
Total Pages: 208
Release: 2013-08-16
Genre: Mathematics
ISBN: 9780124104822

Download Mathematical Neuroscience Book in PDF, Epub and Kindle

Mathematical Neuroscience is a book for mathematical biologists seeking to discover the complexities of brain dynamics in an integrative way. It is the first research monograph devoted exclusively to the theory and methods of nonlinear analysis of infinite systems based on functional analysis techniques arising in modern mathematics. Neural models that describe the spatio-temporal evolution of coarse-grained variables—such as synaptic or firing rate activity in populations of neurons —and often take the form of integro-differential equations would not normally reflect an integrative approach. This book examines the solvability of infinite systems of reaction diffusion type equations in partially ordered abstract spaces. It considers various methods and techniques of nonlinear analysis, including comparison theorems, monotone iterative techniques, a truncation method, and topological fixed point methods. Infinite systems of such equations play a crucial role in the integrative aspects of neuroscience modeling. The first focused introduction to the use of nonlinear analysis with an infinite dimensional approach to theoretical neuroscience Combines functional analysis techniques with nonlinear dynamical systems applied to the study of the brain Introduces powerful mathematical techniques to manage the dynamics and challenges of infinite systems of equations applied to neuroscience modeling

Mathematical Foundations of Neuroscience

Mathematical Foundations of Neuroscience
Author: G. Bard Ermentrout,David H. Terman
Publsiher: Springer Science & Business Media
Total Pages: 434
Release: 2010-07-01
Genre: Mathematics
ISBN: 9780387877082

Download Mathematical Foundations of Neuroscience Book in PDF, Epub and Kindle

This book applies methods from nonlinear dynamics to problems in neuroscience. It uses modern mathematical approaches to understand patterns of neuronal activity seen in experiments and models of neuronal behavior. The intended audience is researchers interested in applying mathematics to important problems in neuroscience, and neuroscientists who would like to understand how to create models, as well as the mathematical and computational methods for analyzing them. The authors take a very broad approach and use many different methods to solve and understand complex models of neurons and circuits. They explain and combine numerical, analytical, dynamical systems and perturbation methods to produce a modern approach to the types of model equations that arise in neuroscience. There are extensive chapters on the role of noise, multiple time scales and spatial interactions in generating complex activity patterns found in experiments. The early chapters require little more than basic calculus and some elementary differential equations and can form the core of a computational neuroscience course. Later chapters can be used as a basis for a graduate class and as a source for current research in mathematical neuroscience. The book contains a large number of illustrations, chapter summaries and hundreds of exercises which are motivated by issues that arise in biology, and involve both computation and analysis. Bard Ermentrout is Professor of Computational Biology and Professor of Mathematics at the University of Pittsburgh. David Terman is Professor of Mathematics at the Ohio State University.

Mathematics for Neuroscientists

Mathematics for Neuroscientists
Author: Fabrizio Gabbiani,Steven James Cox
Publsiher: Academic Press
Total Pages: 628
Release: 2017-03-21
Genre: Science
ISBN: 9780128019061

Download Mathematics for Neuroscientists Book in PDF, Epub and Kindle

Mathematics for Neuroscientists, Second Edition, presents a comprehensive introduction to mathematical and computational methods used in neuroscience to describe and model neural components of the brain from ion channels to single neurons, neural networks and their relation to behavior. The book contains more than 200 figures generated using Matlab code available to the student and scholar. Mathematical concepts are introduced hand in hand with neuroscience, emphasizing the connection between experimental results and theory. Fully revised material and corrected text Additional chapters on extracellular potentials, motion detection and neurovascular coupling Revised selection of exercises with solutions More than 200 Matlab scripts reproducing the figures as well as a selection of equivalent Python scripts

Mathematical and Theoretical Neuroscience

Mathematical and Theoretical Neuroscience
Author: Giovanni Naldi,Thierry Nieus
Publsiher: Springer
Total Pages: 253
Release: 2018-03-20
Genre: Mathematics
ISBN: 9783319682976

Download Mathematical and Theoretical Neuroscience Book in PDF, Epub and Kindle

This volume gathers contributions from theoretical, experimental and computational researchers who are working on various topics in theoretical/computational/mathematical neuroscience. The focus is on mathematical modeling, analytical and numerical topics, and statistical analysis in neuroscience with applications. The following subjects are considered: mathematical modelling in Neuroscience, analytical and numerical topics; statistical analysis in Neuroscience; Neural Networks; Theoretical Neuroscience. The book is addressed to researchers involved in mathematical models applied to neuroscience.

An Introduction to Modeling Neuronal Dynamics

An Introduction to Modeling Neuronal Dynamics
Author: Christoph Börgers
Publsiher: Springer
Total Pages: 457
Release: 2017-04-17
Genre: Mathematics
ISBN: 9783319511719

Download An Introduction to Modeling Neuronal Dynamics Book in PDF, Epub and Kindle

This book is intended as a text for a one-semester course on Mathematical and Computational Neuroscience for upper-level undergraduate and beginning graduate students of mathematics, the natural sciences, engineering, or computer science. An undergraduate introduction to differential equations is more than enough mathematical background. Only a slim, high school-level background in physics is assumed, and none in biology. Topics include models of individual nerve cells and their dynamics, models of networks of neurons coupled by synapses and gap junctions, origins and functions of population rhythms in neuronal networks, and models of synaptic plasticity. An extensive online collection of Matlab programs generating the figures accompanies the book.

Neuroscience

Neuroscience
Author: Alwyn Scott
Publsiher: Springer Science & Business Media
Total Pages: 352
Release: 2007-12-14
Genre: Science
ISBN: 9780387224633

Download Neuroscience Book in PDF, Epub and Kindle

This book will be of interest to anyone who wishes to know what role mathematics can play in attempting to comprehend the dynamics of the human brain. It also aims to serve as a general introduction to neuromathematics. The book gives the reader a qualitative understanding and working knowledge of useful mathematical applications to the field of neuroscience. The book is readable by those who have little knowledge of mathematics for neuroscience but are committed to begin acquiring such knowledge.

Mathematical Foundations of Neuroscience

Mathematical Foundations of Neuroscience
Author: G. Bard Ermentrout,David H. Terman
Publsiher: Springer Science & Business Media
Total Pages: 434
Release: 2010-07-08
Genre: Mathematics
ISBN: 9780387877075

Download Mathematical Foundations of Neuroscience Book in PDF, Epub and Kindle

Arising from several courses taught by the authors, this book provides a needed overview illustrating how dynamical systems and computational analysis have been used in understanding the types of models that come out of neuroscience.

Tutorials in Mathematical Biosciences I

Tutorials in Mathematical Biosciences I
Author: Alla Borisyuk,G. Bard Ermentrout,Avner Friedman,David H. Terman
Publsiher: Springer
Total Pages: 170
Release: 2005-01-28
Genre: Mathematics
ISBN: 9783540315445

Download Tutorials in Mathematical Biosciences I Book in PDF, Epub and Kindle

This volume introduces some basic theories on computational neuroscience. Chapter 1 is a brief introduction to neurons, tailored to the subsequent chapters. Chapter 2 is a self-contained introduction to dynamical systems and bifurcation theory, oriented towards neuronal dynamics. The theory is illustrated with a model of Parkinson's disease. Chapter 3 reviews the theory of coupled neural oscillators observed throughout the nervous systems at all levels; it describes how oscillations arise, what pattern they take, and how they depend on excitory or inhibitory synaptic connections. Chapter 4 specializes to one particular neuronal system, namely, the auditory system. It includes a self-contained introduction, from the anatomy and physiology of the inner ear to the neuronal network that connects the hair cells to the cortex, and describes various models of subsystems.