Simulation of Power Electronics Converters Using PLECS

Simulation of Power Electronics Converters Using PLECS
Author: Farzin Asadi,Kei Eguchi
Publsiher: Academic Press
Total Pages: 568
Release: 2019-11-12
Genre: Technology & Engineering
ISBN: 9780128173657

Download Simulation of Power Electronics Converters Using PLECS Book in PDF, Epub and Kindle

Simulation of Power Electronics Converters Using PLECS® is a guide to simulating a power electronics circuit using the latest powerful software for power electronics circuit simulation purposes. This book assists engineers gain an increased understanding of circuit operation so they can, for a given set of specifications, choose a topology, select appropriate circuit component types and values, estimate circuit performance, and complete the design by ensuring that the circuit performance will meet specifications even with the anticipated variations in operating conditions and circuit component values. This book covers the fundamentals of power electronics converter simulation, along with an analysis of power electronics converters using PLECS. It concludes with real-world simulation examples for applied content, making this book useful for all those in the electrical and electronic engineering field. Contains unique examples on the simulation of power electronics converters using PLECS® Includes explanations and guidance on all included simulations for re-doing the simulations Incorporates analysis and design for rapidly creating power electronics circuits with high accuracy

Power Electronic Converters

Power Electronic Converters
Author: Narayanaswamy P R Iyer
Publsiher: CRC Press
Total Pages: 250
Release: 2018-03-09
Genre: Technology & Engineering
ISBN: 9781351255738

Download Power Electronic Converters Book in PDF, Epub and Kindle

Provides a step-by-step method for the development of a virtual interactive power electronics laboratory. The book is suitable for undergraduates and graduates for their laboratory course and projects in power electronics. It is equally suitable for professional engineers in the power electronics industry. The reader will learn to develop interactive virtual power electronics laboratory and perform simulations of their own, as well as any given power electronic converter design using SIMULINK with advanced system model and circuit component level model. Features Examples and Case Studies included throughout. Introductory simulation of power electronic converters is performed using either PSIM or MICROCAP Software. Covers interactive system model developed for three phase Diode Clamped Three Level Inverter, Flying Capacitor Three Level Inverter, Five Level Cascaded H-Bridge Inverter, Multicarrier Sine Phase Shift PWM and Multicarrier Sine Level Shift PWM. System models of power electronic converters are verified for performance using interactive circuit component level models developed using Simscape-Electrical, Power Systems and Specialized Technology block set. Presents software in the loop or Processor in the loop simulation with a power electronic converter examples.

Power Electronic Converters Modeling and Control

Power Electronic Converters Modeling and Control
Author: Seddik Bacha,Iulian Munteanu,Antoneta Iuliana Bratcu
Publsiher: Springer Science & Business Media
Total Pages: 454
Release: 2013-11-12
Genre: Technology & Engineering
ISBN: 9781447154785

Download Power Electronic Converters Modeling and Control Book in PDF, Epub and Kindle

Modern power electronic converters are involved in a very broad spectrum of applications: switched-mode power supplies, electrical-machine-motion-control, active power filters, distributed power generation, flexible AC transmission systems, renewable energy conversion systems and vehicular technology, among them. Power Electronics Converters Modeling and Control teaches the reader how to analyze and model the behavior of converters and so to improve their design and control. Dealing with a set of confirmed algorithms specifically developed for use with power converters, this text is in two parts: models and control methods. The first is a detailed exposition of the most usual power converter models: · switched and averaged models; · small/large-signal models; and · time/frequency models. The second focuses on three groups of control methods: · linear control approaches normally associated with power converters; · resonant controllers because of their significance in grid-connected applications; and · nonlinear control methods including feedback linearization, stabilizing, passivity-based, and variable-structure control. Extensive case-study illustration and end-of-chapter exercises reinforce the study material. Power Electronics Converters Modeling and Control addresses the needs of graduate students interested in power electronics, providing a balanced understanding of theoretical ideas coupled with pragmatic tools based on control engineering practice in the field. Academics teaching power electronics will find this an attractive course text and the practical points make the book useful for self tuition by engineers and other practitioners wishing to bring their knowledge up to date.

Modelling and Simulation of Power Electronic Converter Dominated Power Systems in PowerFactory

Modelling and Simulation of Power Electronic Converter Dominated Power Systems in PowerFactory
Author: Francisco M. Gonzalez-Longatt,José Luis Rueda Torres
Publsiher: Springer Nature
Total Pages: 381
Release: 2021
Genre: Electric current converters
ISBN: 9783030541248

Download Modelling and Simulation of Power Electronic Converter Dominated Power Systems in PowerFactory Book in PDF, Epub and Kindle

This book provides an overview of power electronic converters for numerical simulations based on DIgSILENT PowerFactory. It covers the working principles, key assumptions and implementation of models of different types of these power systems. The book is divided into three main parts: the first discusses high-voltage direct currents, while the second part examines distribution systems and micro-grids. Lastly, the third addresses the equipment and technologies used in modelling and simulation. Each chapter includes practical examples and exercises, and the accompanying software illustrates essential models, principles and performance using DIgSILENT PowerFactory. Exploring various current topics in the field of modelling power systems, this book will appeal to a variety of readers, ranging from students to practitioners.

Modeling Uncertainties in DC DC Converters with MATLAB and PLECS

Modeling Uncertainties in DC DC Converters with MATLAB   and PLECS
Author: Farzin Asadi,Sawai Pongswatd,Kei Eguchi,Ngo Lam Trung
Publsiher: Morgan & Claypool Publishers
Total Pages: 294
Release: 2018-11-12
Genre: Technology & Engineering
ISBN: 9781681734385

Download Modeling Uncertainties in DC DC Converters with MATLAB and PLECS Book in PDF, Epub and Kindle

Modeling is the process of formulating a mathematical description of the system. A model, no matter how detailed, is never a completely accurate representation of a real physical system. A mathematical model is always just an approximation of the true, physical reality of the system dynamics. Uncertainty refers to the differences or errors between model and real systems and whatever methodology is used to present these errors will be called an uncertainty model. Successful robust control-system design would depend on, to a certain extent, an appropriate description of the perturbation considered. Modeling the uncertainties in the switch mode DC-DC converters is an important step in designing robust controllers. This book studies different techniques which can be used to extract the uncertain model of DC-DC converters. Once the uncertain model is extracted, robust control techniques such as ??∞ and μ synthesis can be used to design the robust controller. The book is composed of two case studies. The first one is a buck converter and the second one is a Zeta converter. MATLAB® programming is used extensively throughout the book. Some sections use PLECS® as well. This book is intended to be guide for both academicians and practicing engineers.

Computer Techniques for Dynamic Modeling of DC DC Power Converters

Computer Techniques for Dynamic Modeling of DC DC Power Converters
Author: Farzin Asadi
Publsiher: Springer Nature
Total Pages: 75
Release: 2022-06-01
Genre: Technology & Engineering
ISBN: 9783031025044

Download Computer Techniques for Dynamic Modeling of DC DC Power Converters Book in PDF, Epub and Kindle

Computers play an important role in the analyzing and designing of modern DC-DC power converters. This book shows how the widely used analysis techniques of averaging and linearization can be applied to DC-DC converters with the aid of computers. Obtained dynamical equations may then be used for control design. The book is composed of two chapters. Chapter 1 focuses on the extraction of control-to-output transfer function. A second-order converter (a buck converter) and a fourth-order converter (a Zeta converter) are studied as illustrative examples in this chapter. Both ready-to-use software packages, such as PLECS® and MATLAB® programming, are used throught this chapter. The input/output characteristics of DC-DC converters are the object of considerations in Chapter 2. Calculation of input/output impedance is done with the aid of MATLAB® programming in this chapter. The buck, buck-boost, and boost converter are the most popular types of DC-DC converters and used as illustrative examples in this chapter. This book can be a good reference for researchers involved in DC-DC converters dynamics and control.

Advanced Power Electronics Converters

Advanced Power Electronics Converters
Author: Euzeli dos Santos,Edison R. da Silva
Publsiher: John Wiley & Sons
Total Pages: 384
Release: 2014-11-24
Genre: Technology & Engineering
ISBN: 9781118880944

Download Advanced Power Electronics Converters Book in PDF, Epub and Kindle

This book covers power electronics, in depth, by presenting the basic principles and application details, which can be used both as a textbook and reference book. Introduces a new method to present power electronics converters called Power Blocks Geometry (PBG) Applicable for courses focusing on power electronics, power electronics converters, and advanced power converters Offers a comprehensive set of simulation results to help understand the circuits presented throughout the book

Dynamics and Control of Switched Electronic Systems

Dynamics and Control of Switched Electronic Systems
Author: Francesco Vasca,Luigi Iannelli
Publsiher: Springer Science & Business Media
Total Pages: 493
Release: 2012-03-30
Genre: Technology & Engineering
ISBN: 9781447128847

Download Dynamics and Control of Switched Electronic Systems Book in PDF, Epub and Kindle

The increased efficiency and quality constraints imposed on electrical energy systems have inspired a renewed research interest in the study of formal approaches to the analysis and control of power electronics converters. Switched systems represent a useful framework for modeling these converters and the peculiarities of their operating conditions and control goals justify the specific classification of “switched electronic systems”. Indeed, idealized switched models of power converters introduce problems not commonly encountered when analyzing generic switched models or non-switched electrical networks. In that sense the analysis of switched electronic systems represents a source for new ideas and benchmarks for switched and hybrid systems generally. Dynamics and Control of Switched Electronic Systems draws on the expertise of an international group of expert contributors to give an overview of recent advances in the modeling, simulation and control of switched electronic systems. The reader is provided with a well-organized source of references and a mathematically-based report of the state of the art in analysis and design techniques for switched power converters. Intuitive language, realistic illustrative examples and numerical simulations help the reader to come to grips with the rigorous presentation of many promising directions of research such as: converter topologies and modulation techniques; continuous-time, discrete-time and hybrid models; modern control strategies for power converters; and challenges in numerical simulation. The guidance and information imparted in this text will be appreciated by engineers, and applied mathematicians working on system and circuit theory, control systems development, and electronic and energy conversion systems design.